
School of Engineering Technical Report TR-2009-001
University of California, Merced – November 2009

On Weighted Edge-Searching

Andreas Kolling and Stefano Carpin

University of California
School of Engineering
Merced,CA, USA
http://robotics.ucmerced.edu

Summary. In this document we address some complications regarding the weighted
edge-searching problem. This variant of edge-searching extends the original problem
by considering situations where multiple searchers may be required to clear a single
edge or guard a single vertex. We show that previous work on this topic overlooked
a fundamental problem that arises from the addition of weights. As a consequence,
a previously developed algorithm that was thought to compute optimal solutions on
trees is in fact not optimal. We describe at which points the proofs are incorrect,
provide a counterexample, and point out how to address the problem.

1 Introduction

Edge-searching has been investigated in manifold variations in the literature
since it was first proposed in [4]. In general, edge-searching is concerned with
the detection of omniscient and arbitrarily fast intruders in a graph. A team
of searchers tries to find all such intruders by moving through the graph.
The potential presence of an undetected intruder is represented by the con-
cept of contamination, and the team of searchers removes this contamination
thereby clearing the graph and detecting all intruders. An entirely cleared
graph subsequently corresponds to the detection of all intruders. In edge-
searching contamination resides in edges and can be cleared with one searcher
moving along the edge. Searchers in vertices block contamination from spread-
ing towards other edges. This operation is denoted as guarding a vertex. The
goal in edge-searching is to coordinate all searchers so that the graph can be
cleared with the least number of searchers. An annotated bibliography giv-
ing an overview of the variations on graph-searching is available in [2]. The
purpose of this document is to present and discuss particular results from
[1], in which a weighted variant of edge-searching is introduced. This variant
additionally allows for multiple searchers to be required to guard a vertex or
clear an edge. This extension has significant implications which, as we shall
show, have not yet been addressed sufficiently. More precisely, some results
presented in [1] regarding optimal algorithms for weighted edge-searching in



2 Andreas Kolling and Stefano Carpin

trees appears to be not correct. In fact, we show a counterexample in which
the algorithm from [1] is suboptimal. We first proceed by presenting the basic
notation for weighted edge-searching in Section 2. This is followed by Section
3 which revises results from [1] and presents a counterexample. Finally, we
conclude with a pointer towards a remedy of the problem in Section 4.

2 Notation for Weighted Edge-Searching

We recall some of the notation and definitions from [1]. The weighted edge-
searching problem is defined on a weighted graph G = (V,E) with a weight
function ω : V ∪ E → Z+. The graph G is initially fully contaminated. The
weight on edges and vertices describes the number of searchers required to
clear an edge or guard a vertex, which avoids contamination from spreading
into cleared parts. Additionally, it is required that:

ω(x) ≥ ω(e) for any edge e ∈ E incident to x ∈ V. (1)

Xi denotes the set of all clear edges at time i (edges are also called links in [1].)
Contamination spreads through all vertices that are not considered guarded,
i.e. all those with less than ω(x) searchers placed on them. An edge is cleared
by moving ω(e) searchers along it. The weight function ω can be interpreted
as a cost function that determines the cost in terms of the number of searchers
needed for successful clearing and guarding actions. Recontamination is the
contamination of a previously clear edge. In [1] the following definition of a
search step is given.

Definition 1. A search step of a contiguous search in a weighted network is
one of the following two operations (1) place a team of q ≥ 1 searchers on a
node, and (2) move a team of q ≥ 1 searchers along a link, both operations
being performed under the constraint that the set Xi of all clear links after
step i must be connected, for any i.

A search strategy is a sequence of such contiguous search steps that clear all
links. The contiguous search numbers is denoted by cs(G) and is the minimum
number of searchers needed to solve the contiguous search problem in G, i.e.
clear all initially contaminated edges by following a contiguos search strategy.
We shall refer to such strategies that clear G with cs(G) as optimal.

3 Search Strategies on Trees

As a result of Section 3 in [1] it follows that in trees there always exists an op-
timal contiguous strategy that is also monotone, i.e. it never recontaminates
any edge. Therefore, an optimal contiguous and monotone strategy is also an
optimal contiguous strategy. Based on this result, Section 4 in [1] rightfully



On Weighted Edge-Searching 3

focuses on the design of an algorithms for trees that attempts to compute
optimal contiguous strategies that are monotone. In this section T = (V,E)
denotes a weighted tree and the goal is to find an optimal contiguous strat-
egy starting at some node x ∈ V , called homebase. The minimal number of
searchers to clear T starting at x is written csx(T ).
The part that is most relevant for this document is Lemma 6 from [1] for which
the proof is flawed. We first describe the proof as presented in [1] highlighting
where the problem is, and we then show that the statement of the lemma is
false by giving a counterexample. Consequently, the algorithm presented in
Section 4 is suboptimal since Lemma 6 is the basis on which further results
in that section depend.
For the claim of Lemma 6 let Tx denote the tree T rooted at x ∈ V . Write
Tx[y] for the subtree of Tx rooted in y and let cs(Tx[y]) be the contiguous
search number of Tx[y] from y1.

Claim (Lemma 6 from [1]). Let y1, y2, . . . , yk be the k ≥ 2 children of y in
Tx, and assume, w.l.o.g., that cs(Tx[yi]) ≥ cs(Tx[yi+1])2 for all i < k. Then

cs(Tx[y]) = max{cs(Tx[y1]), cs(Tx[y2]) + ω(y)}. (2)

The proof from [1] is as follows. We present the proof verbatim with our
comments added as footnotes:

Clearly cs(Tx[y]) ≥ cs(Tx[y1]), otherwise Tx[y1] cannot be cleared.
If cs(Tx[y1]) > cs(Tx[y2]) + ω(y), then cs(Tx[y1]) searchers suffice to
clear Tx[y] by visiting y1 last among the children of x3, and by letting
ω(y) searchers occupying node y while the other subtrees are visited.
Indeed, from Eq. 1, ω({y, yi}) ≤ ω(yi) ≤ cs(Tx[yi]) for every i.
Hence let cs(Tx[y1]) < cs(Tx[y2]) +ω(y). Let β be a contiguous search
strategy which uses b = cs(Tx[y2]) + ω(y)− 1 searchers to clear Tx[y].
If Tx[y2] is cleared before Tx[y1], while the cs(Tx[y2]) searchers are
clearing Tx[y2], y will be occupied by at most ω(y)− 1 searchers, and
incident to {y, y1} 4. Thus β does not satisfy the condition of Theorem
15. Similarly, if Tx[y1] is cleared before Tx[y2], then while the cs(Tx[y1])
searchers are clearing Tx[y1], at most ω(y)−1 searcher will be at y since
by definitions cs(Tx[y1]) ≥ cs(Tx[y2]), and b = cs(Tx[y2]) + ω(y) − 1

1 Here we use the notation as from [1], but writing csy(Tx[y]) would be more con-
sistent.

2 The term cs(Tx[yi+1]) appears as cs(T [yi+1]) in [1] which is a typo.
3 This should be y, but this is only a typo.
4 Here a first problem appears. There is no reason why Tx[y1] cannot be partially

cleared, i.e. Tx[y1] is not fully cleared, but the edge incident to y is not contami-
nated.

5 Theorem 1 shows that a contiguous strategy that is optimal and monotone start-
ing at x0 exists.



4 Andreas Kolling and Stefano Carpin

6. Since y is incident to {y, y2} which is contaminated, y becomes
unsafe, and β is hence not monotone. Therefore, strictly more than
cs(Tx[y2]) +ω(y)−1 searchers are required for a monotone strategy if
cs(Tx[y1]) < cs(Tx[y2]) + ω(y). One the other hand, cs(Tx[y2]) + ω(y)
searchers clearly suffice to clear Tx[y] by visiting y1 last among the
children of y, since at least ω(y) will stay at y making it safe while the
other subtrees are visited. Links incident to y are cleared since, again
from Eq. 1, ω({y, yi}) ≤ ω(yi) ≤ cs(Tx[yi]) for every i.�

The important fact to notice is that Tx[y1] and Tx[y2] can be cleared partially
which is not considered in the original argument. For weighted edge-search
this turns out to be important. Let us first give the intuition for this before
we present a counterexample to the claim of Lemma 6. Instead of using ω(y)
searchers in y one can prevent recontamination by partially clearing one of
the subtrees Tx[y1] or Tx[y2] and possibly reach a state in which searchers on
a vertex z ∈ V within one of these subtrees such that ω(z) < ω(y) suffice to
prevent recontamination. Then one can proceed to fully clear the other subtree
but only using ω(z) plus the searchers needed for the other subtree. Notice
that from the ordering it is not clear which subtree should be cleared first given
this additional possibility of moving the guarded vertices into the subtree by
partially clearing it. Notice also that instead of one vertex z in one of the
subtrees we may have multiple vertices z1, z2, . . . , zm s.t.

∑m
i=1 ω(zi) < ω(y).

It is sufficient to say that the fact that we can split up the ω(y) searchers from
y causes this complication. This argument would not be apply if ω(y) = 1
and hence only applies to the general weighted case. The consequence is that
weighted edge-searching is considerably more complicated than non-weighted
edge-searching. Let us now present the counterexample.
Consider the subtree Tx[y] in Fig. 1. Clearly, the subtrees Ty[y1] and Ty[y2]
need 7 and 5 searchers respectively. With ω(y) = 5 Eq. 2 claims that
cs(Tx[y]) = 10. Yet in Fig. 1 we show a valid sequence of search steps that
clears the entire tree but uses only 8 searchers, all initially placed on y. This
strategy is contiguous and monotone.
Since the counterexample shows that Lemma 6 in [1] is indeed a false claim
it follows that the algorithm in Section 4 is not optimal. The same coun-
terexample applies there. There is also another minor conceptual problem in
the presented algorithm from Section 4 in [1]. According to the definition of
recontamination, adapted from non-weighted edge-searching, the weight of a
leaf vertex is not relevant for the number of searchers that need to be sent
into it. This is because a leaf vertex never needs to be guarded. Contamina-
tion resided in edges and once the edge is cleared there is no possibility of
recontamination left since the leaf has only one edge. Let vertex y be a leaf
incident to x with edge e. Then only ω(e) are required to be moved across e
towards y even if ω(e) < ω(y), since y does not need to be guarded after e

6 Similarly as before, it is possible that one subtree is partially cleared before the
other is fully cleared.



On Weighted Edge-Searching 5

7

5

1

5

5

11

0

8

0

0

1

0

7

1

0

7

7

0

1

0

7

7

0 0 0

7

+8

0

0

1

07

7

7
7

5

0

0

3

5

0

y1 y2

y

7

7

7

Tx[y]

Tx[y1]

Tx[y2]

5

1

1

5

5

5

1

0 0 0 0

0

Fig. 1. A subtree Tx[y] is shown on the upper left with its subtree Tx[y1] and Tx[y2].
Below we show a contiguous and monotone search strategy that clears all initially
contaminated edges. First 8 searchers are placed on y and one is moved across {y, y2}
to clear it. Then 7 searchers clear Tx[y1]. Contaminated edges are shown as thick
lines and thin lines are cleared edges. The number of searchers occupying a vertex
are written within it while the number of searcher about to move across an edge are
marked with an arrow. The edge that is about to be cleared by a move along it is
drawn as a dashed line.

is cleared. Correcting the algorithm from λx(e) = ω(y) to λx(e) = ω(e) will
solve this problem. This is again a complication arising from weights, since in
the non-weighted case the searcher traversing e will also automatically guard
y.

4 Conclusion

From the above it follows that the problem of finding an optimal algorithm
for computing contiguous strategies in trees remains open. The fundamental
problem that such an algorithm has to address is how to keep track of the
guarding cost of subtrees and how various guarding costs can be achieved.
This may involve multiple times entering and exiting partially cleared sub-
tree. It turns out a similar problem for Graph-Clear, another graph-searching
problem, has been addressed in [3]. Therein the concept of cut sets and cut



6 Andreas Kolling and Stefano Carpin

sequences are introduced. These cut sets and cut sequences keep track of the
intermediate states that the subtrees can have and the cost to achieve these
states as well as the costs to maintain the state without recontamination (re-
ferred to as blocking cost.) The same approach as used and developed in [3]
can be adapted for weighted edge-searching and lead to an optimal algorithm
on trees. Only the computation of the clearing cost and blocking cost need to
be modified. A detailed presentation of such an algorithm is, however, subject
to further work.

References

1. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder
by mobile agents. In Proc. of the fourteenth annual ACM Symposium on Parallel
Algorithms and Architectures, pages 200–209, New York, NY, USA, 2002. ACM
Press.

2. F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci., 399(3):236–245, 2008.

3. A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams. IEEE Trans-
actions on Robotics, 2009. accepted for publication.

4. T.D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, edi-
tors, Theory and Appl. of Graphs, volume 642, pages 426–441. Springer Berlin /
Heidelberg, 1976.


