
MCMCDA 1

Markov Chain Monte Carlo Data Association

for Multi-Target Tracking
Songhwai Oh, Stuart Russell, and Shankar Sastry

Abstract

This paper presents Markov chain Monte Carlo data association (MCMCDA) for solving data

association problems arising in multi-target tracking in a cluttered environment. When the number of

targets is fixed, the single-scan version of MCMCDA approximates joint probabilistic data association

(JPDA). Although the exact computation of association probabilities in JPDA is NP-hard, we prove that

the single-scan MCMCDA algorithm provides a fully polynomial randomized approximation scheme for

JPDA. For general multi-target tracking problems, in which unknown numbers of targets appear and

disappear at random times, we present a multi-scan MCMCDA algorithm that approximates the optimal

Bayesian filter. We also present extensive simulation studies supporting theoretical results in this paper.

Our simulation results also show that MCMCDA outperforms multiple hypothesis tracking (MHT) by a

significant margin in terms of accuracy and efficiency under extreme conditions, such as a large number

of targets in a dense environment, low detection probabilities, and high false alarm rates.

I. INTRODUCTION

Multi-target tracking plays an important role in many areas of engineering such as surveillance [1],

computer vision [2,3], network and computer security [4], and sensor networks [5]. In the standard setup,

some indistinguishable targets move continuously in a given region, typically independently according to

a known, Markovian process. Targets arise at random in space and time, persist for a random length of

time, and then cease to exist; the sequence of states that a target follows during its lifetime is called a

track. The positions, or more generally partial states, of moving targets are measured, either at random

intervals or, more typically, in periodic scans that measure the positions of all targets simultaneously.
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The position measurements are noisy and occur with detection probability less than one, and there is a

noise background of spurious position reports, i.e., false alarms or clutter.

The essence of the multi-target tracking problem is to find tracks from the noisy measurements. Now,

if the sequence of measurements associated with each target is known, multi-target tracking (at least

under the assumption of independent motion) reduces to a set of state estimation problems, which, for

the purposes of this paper, we assume to be straightforward. Unfortunately, the association between

measurements and targets is unknown. The data association problem is to work out which measurements

were generated by which targets; more precisely, we require a partition of measurements such that each

element of a partition is a collection of measurements generated by a single target or clutter [6]. In the

general case, uncertainty as to the correct association is unavoidable.

Multi-target tracking algorithms are often categorized according to the objective function that they

purport to optimize:

• Heuristic approaches typically involve no explicit objective function. For example, the greedy nearest-

neighbor filter (NNF) [1] processes the new measurements in some order and associates each with

the target whose predicted position is closest, thereby selecting a single association after each scan.

Although effective under benign conditions, the NNF gives order-dependent results and breaks down

under more difficult circumstances.

• Bayesian approaches: (1) Maximum a posteriori (MAP) approaches find the most probable as-

sociation, given the measurements made so far, and estimate tracks given this association. (2)

Bayes estimator approaches estimate tracks by minimizing the posterior expected value of some

risk function. When the mean squared error is used as a risk function, the Bayes estimator is an

minimum mean-square error (MMSE) estimate. The MMSE estimates of tracks are computed by

summing over all possible associations, weighted by their posteriors.

Tracking algorithms can also be categorized by the way in which they process measurements:

• Single-scan algorithms estimate the current states of targets based on their previously estimated states

and the current scan of measurements. Like recursive state estimation methods (e.g., the Kalman

filter), such methods can compute exact posteriors because the previous estimate is a sufficient

statistic, but unfortunately the complexity of the exact posterior grows exponentially with time.

Single-scan algorithms typically use a highly simplified approximate representation of the posterior

state estimate.

• Multi-scan algorithms estimate the current states of targets based on their previously estimated



MCMCDA 3

states, multiple past scans and the current scan of measurements. They may revisit past scans when

processing each new scan, and can thereby revise previous estimates in the light of new evidence.

MAP approaches include the well-known multiple hypothesis tracking (MHT) algorithm [7]. MHT

is a multi-scan tracking algorithm that maintains multiple hypotheses associating past measurements

with targets. When a new set of measurements arrives, a new set of hypotheses is formed from each

previous hypothesis. The algorithm returns a hypothesis with the highest posterior as a solution. MHT is

categorized as a “deferred logic” method [8] in which the decision about forming a new track or removing

an existing track is delayed until enough measurements are collected. MHT is capable of initiating

and terminating a varying number of tracks and is suitable for autonomous surveillance applications.

The main disadvantage of MHT in its pure form is its computational complexity since the number of

hypotheses grows exponentially over time. Various heuristic methods have been developed to control this

growth [7,9,10]; but these methods sacrifice the MAP property. Other MAP approaches have been tried

besides MHT, including 0-1 integer programming [11] and multidimensional assignment [8]. As the latter

reference shows, the underlying MAP data association problem is NP-hard, so we do not expect to find

efficient, exact algorithms.

Bayes estimator approaches to solve data association problems are even less tractable than the MAP

computation. Several “pseudo-Bayesian” methods have been proposed, of which the best-known is the

joint probabilistic data association (JPDA) filter [1]. JPDA is a suboptimal single-scan approximation to

the optimal Bayesian filter; it can also be viewed as an assumed-density filter in which the joint posterior

distribution is approximated by a product of simpler distributions such as moment-matching Gaussian

distributions. At each time step, instead of finding a single best association between measurements and

tracks, JPDA enumerates all possible associations and computes association probabilities {βjk}, where

βjk is the probability that the jth measurement extends the kth track. Given an association, the state

of a target is estimated by a filtering algorithm and this conditional state estimate is weighted by the

association probability. Then the state of a target is estimated by summing over the weighted conditional

estimates. JPDA has proved very effective in cluttered environments compared with NNF [1]. The exact

calculation of association probabilities {βjk} in JPDA, which requires the summation over all association

event probabilities, is NP-hard [12] since the related problem of finding the permanent of a matrix is

#P-complete1 [14]. Some heuristic approaches to approximate JPDA include a “cheap” JPDA algorithm

1 A #P-complete problem is computationally equivalent to computing the number of accepting computations of a polynomial-

time nondeterministic Turing machine and #P contains NP [13].
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[15], “suboptimal” JPDA [16] and “near-optimal” JPDA [17]. In [18], a single-scan data association

problem is considered and a leave-one-out heuristic is developed to avoid the enumeration of all possible

associations. Other Bayes estimator approaches include the probability hypothesis density (PHD) filter

[19,20], probabilistic multi-hypothesis tracking (PMHT) [21], and mixture reduction [22], to name a few.

The main contribution of this paper is the development of a real-time multi-target tracking method

called Markov chain Monte Carlo data association (MCMCDA). Unlike MHT and JPDA, MCMCDA is

a true approximation scheme for the optimal Bayesian filter; i.e., when run with unlimited resources, it

converges to the Bayesian solution. As the name suggests, MCMCDA uses Markov chain Monte Carlo

(MCMC) sampling instead of enumerating over all possible associations. MCMC was first used to solve

data association problems by Pasula et al. [23, 24], who showed it to be effective for multi-camera

traffic surveillance problems involving hundreds of vehicles. More recently, in [25], MCMC was used

to approximate the association probabilities in JPDA and was shown to outperform Fitzgerald’s cheap

JPDA.2 MCMCDA goes beyond these contributions by incorporating missing measurements, false alarms

and an ability to initiate and terminate tracks, so that the algorithm can be applied to the full range of

data association problems.

The paper has two main technical results. The first is a theorem showing that, when the number

of targets is fixed, single-scan MCMCDA is a fully polynomial randomized approximation scheme for

JPDA. More specifically, for any ε > 0 and any 0 < η < 0.5, the algorithm finds estimates within

ratio ε with probability at least 1− η in time complexity O(ε−2 log η−1N(N logN + log(ε−1))), where

N is the number of measurements. The theorem is based on the seminal work of Jerrum and Sinclair

[13], who designed an MCMC algorithm for approximating the permanent of a matrix and developed

new techniques for analyzing its rate of convergence. As mentioned earlier, the relationship between

JPDA and computing the permanent was identified by Collins and Uhlmann [12]; the connection to the

polynomial-time approximation theorems of Jerrum and Sinclair was first noticed by Pasula et al. [23].

Although our proof has the same structure as that of Jerrum and Sinclair, substantial technical work

was required to complete the mapping from computing the permanent to solving JPDA, including the

usage of gating conditions that ensure appropriate lower bounds on individual association probabilities.

In addition, we present simulation results supporting our theoretical results.

Our second technical result is the complete specification of the transition structure for a multi-scan

2 MCMC has also been used for problems that are roughly isomorphic to the data association problem, including state

estimation in the switching Kalman filter [26] and stereo correspondence in computer vision [3].
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version of MCMCDA that includes detection failure, false alarms, and track initiation and termination.

We prove that the resulting algorithm converges to the full Bayesian solution and present simulation

results supporting the convergence result. We also provide the first extensive experimental investigation

of MCMCDA’s performance on classical data association problems. We demonstrate remarkably effective

real-time performance of MCMCDA compared to MHT under extreme conditions, such as a large number

of targets in a dense environment, low detection probabilities, and high false alarm rates. We also present

an example in which MCMCDA runs 20 times faster than MHT while outperforming MHT.

The remainder of this paper is structured as follows. The multi-target tracking problem and its probabil-

ity model are described in Section II. In Section III, the Markov chain Monte Carlo (MCMC) method is

summarized. The single-scan MCMCDA algorithm is presented in Section IV along with the proof that it

approximates JPDA in polynomial time. The multi-scan MCMCDA algorithm is described in Section V.

II. MULTI-TARGET TRACKING

A. Problem Formulation

Let T ∈ Z+ be the duration of surveillance. Let K be the (unknown) number of objects that appear in

the surveillance region R during the surveillance period. Each object k moves in R for some unknown

duration [tki , t
k
f ] ⊆ [1, T ]. Each object arises at a random position in R at tki , moves independently around

R until tkf and disappears. At each time, an existing target persists with probability 1−pz and disappears

with probability pz. The number of objects arising at each time over R has a Poisson distribution with

a parameter λbV where λb is the birth rate of new objects per unit time, per unit volume, and V is the

volume of R. The initial position of a new object is uniformly distributed over R.

Let F k : Rnx → Rnx be the discrete-time dynamics of the object k, where nx is the dimension of the

state variable, and let xkt ∈ Rnx be the state of the object k at time t.3 The object k moves according to

xkt+1 = F k(xkt ) + wkt , for t = tki , . . . , t
k
f − 1, (1)

where wkt ∈ Rnx are white noise processes.

The noisy observation (or measurement4) of the state of the object is measured with a detection

probability pd. With probability 1− pd, the object is not detected and we call this a missing observation.

There are also false alarms and the number of false alarms has a Poisson distribution with a parameter

3 We assume that targets are indistinguishable in this paper, but if observations include target type or attribute information,

the state variable can be extended to include target type information.
4 The terms observation and measurement are used interchangeably in this paper.
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λfV where λf is the false alarm rate per unit time, per unit volume. Let nt be the number of observations

at time t, including both noisy observations and false alarms. Let yjt ∈ Rny be the jth observation at

time t for j = 1, . . . , nt, where ny is the dimension of each observation vector. Each object generates

an observation at each sampling time if it is detected. Let Hj : Rnx → Rny be the observation model.

Then the observations are generated as follows:

yjt =

 Hj(xkt ) + vjt if the jth observation is from xkt

ut otherwise,
(2)

where vjt ∈ Rny are white noise processes and ut ∼ Unif(R) is a random process for false alarms.

The multi-target tracking problem is to estimate K, {tki , tkf } and {xkt : tki ≤ t ≤ tkf }, for k = 1, . . . ,K,

from observations.

B. Probability Model

In order to perform Bayesian inference on a multi-target tracking problem, we need first to specify

the probability model for multi-target tracking. This section describes the probability model and derives

a formula for computing the posterior (up to a normalizing constant).

Suppose that ω denotes a set of parameters of interest. ω is not directly observable. Instead, we make

a set of measurements Y . The objective of Bayesian inference is to make probability statements about

ω given Y . For this objective, we first need a joint probability distribution P (ω, Y ). Then the posterior

P (ω|Y ) can be represented as below using Bayes rule:

P (ω|Y ) =
P (ω, Y )∫
P (ω, Y ) dω

=
P (Y |ω)P (ω)

P (Y )
, (3)

where P (ω) is the prior distribution of ω and P (Y |ω) is the likelihood of Y given ω.

In the probability model for multi-target tracking, ω is an association event, i.e., a partition of mea-

surements such that each element of the partition is a collection of measurements generated by a single

target or clutter [6]. Since, in general, there is no closed-form formula for computing P (Y ), one can only

compute P (ω|Y ) up to a normalizing constant, which requires computation of P (Y |ω) and P (ω). For a

fixed association event ω, P (Y |ω) can be computed by solving a set of single-target tracking problems.

Hence, we focus our attention to the derivation of P (ω) in the remainder of this section.

We first define {ω} for all possible measurement sizes. Let µ be a nonnegative T -dimensional vector,

i.e., µ = [µ1, . . . , µT ]T, representing the possible numbers of measurements from t = 1 to t = T , where

µt ∈ Z+∪{0}. For each value of µ, define a set of measurement indices Υµ
t = {(t, 1), (t, 2), . . . , (t, µt)}

for µt > 0, where (t, i) is an index to the ith measurement at time t, and Υµ
t = ∅ for µt = 0. Now
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let Υµ = ∪Tt=1Υµ
t be an index set to a set of measurements whose size matches µ and let the set

{Υµ : µ ∈ ZT } contain all possible index sets.

For each µ, let Ωµ be a collection of partitions of Υµ such that, for ω ∈ Ωµ, ω = {τ0, τ1, . . . , τK},

where τ0 is a set of indices to false alarms and τk is a set of indices to measurements from target k, for

k = 1, . . . ,K. More formally, ω ∈ Ωµ is defined as follows:

1) ω = {τ0, τ1, . . . , τK};

2)
⋃K
k=0 τk = Υµ and τi ∩ τj = ∅ for i 6= j;

3) τ0 is a set of indices to false alarms; and

4) |τk ∩Υµ
t | ≤ 1 for k = 1, . . . ,K and t = 1, . . . , T ;

Here, K = K(ω) is the number of tracks for the given partition ω ∈ Ωµ and |S| denotes the cardinality of

the set S. We call τk a track when there is no confusion, although the actual track is a sequence of state

estimates computed from the observations indexed by τk. (We assume there is a deterministic function

that returns a sequence of estimated states given a set of observations, so no distinction is required.) The

fourth requirement says that a track can have at most one observation at each time, but, in the case of

multiple sensors with overlapping sensing regions, we can easily relax this requirement to allow multiple

observations per track. For special cases in which pd = 1 or λf = 0, the definition of Ωµ can be adjusted

accordingly.

Example 1: Let T = 5 and µ = [2, 2, 2, 2, 2]T; then

Υµ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)}.

An example of ω ∈ Ωµ is ω = {τ0, τ1, τ2}, where τ0 = {(3, 2)}, τ1 = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)},

and τ2 = {(1, 2), (2, 2), (4, 2), (5, 2)}. This example is shown in Figure 1.

Now let Ω̃ = {ω ∈ Ωµ : µ ∈ ZT }. Notice that µ = µ(ω) is a deterministic function of ω ∈ Ω̃. In

addition, we can compute the following numbers from ω ∈ Ω̃:

• et, the number of targets present at time t with e0 = 0;

• zt, the number of targets terminated at time t with z1 = 0;

• at, the number of new targets at time t;

• dt, the number of detected targets at time t; and

• ft, the number of false alarms at time t, ft = µt − dt.

Since these numbers are deterministic functions of ω ∈ Ω̃, we have P (ω) = P (ω,N ) = P (ω|N )P (N ),

where N = {µt, et, zt, at, dt : 1 ≤ t ≤ T}. Based on the target termination, target detection, new target
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arrival, and false alarm models described in Section II-A, we have

P (N ) =
T∏
t=1

[(
et−1

zt

)
pzt

z (1− pz)et−1−zt

(
et−1 − zt + at

dt

)
pdt

d (1− pd)et−1−zt+at−dt

× (λbV )at

at!
exp(−λbV )

(λfV )ft

ft!
exp(−λfV )

]
. (4)

Since ω ∈ Ω̃ with the same N are indistinguishable, i.e., invariant under permutation of target indices,

they are exchangeable and we assign a uniform prior on them. Hence,

P (ω|N ) ∝
T∏
t=1

[(
et−1

zt

)(
et−1 − zt + at

dt

)(
µt
dt

)(
dt
at

)
(dt − at)!

]−1

. (5)

Combining (4) and (5), the prior P (ω) is

P (ω) ∝
T∏
t=1

1
µt!

pzt
z (1− pz)et−1−ztpdt

d (1− pd)et−1−zt+at−dt(λbV )at(λfV )µt−dt . (6)

We simplify (6) by letting ct = et−1−zt be the number of targets from time t−1 that have not terminated

at time t, and gt = et−1 − zt + at − dt be the number of undetected targets. Then, the prior model (6)

becomes

P (ω) ∝
T∏
t=1

1
µt!

pzt
z (1− pz)ctpdt

d (1− pd)gt(λbV )at(λfV )ft . (7)

Let Yt = {yjt : j = 1, . . . , nt} be all measurements at time t and Y = {Yt : 1 ≤ t ≤ T} be all

measurements from t = 1 to t = T . Yt can be considered as a vector with random ordering as indicated

by the exchangeability of indices in (5). Applying Bayes rule, the posterior of ω ∈ Ω̃ becomes:

P (ω|Y ) ∝ P (Y |ω)P (ω) (8)

with P (ω) given in (7).

It is important to notice that P (Y |ω) = 0 if µ(ω) 6= n(Y ), where n(Y ) = [n1(Y ), . . . , nT (Y )]T

denotes the number of measurements at each time in Y . Hence, we can restrict our attention to those

ω ∈ Ω̃ with µ(ω) = n(Y ). This crucial observation makes the numerous computations based on (8)

practical. The set of all possible associations is now defined as Ω := Ωn(Y ) = {ω ∈ Ω̃ : µ(ω) = n(Y )}

and Ω is used instead of Ω̃ throughout this paper. Thus, it is convenient to view Ω as a collection of

partitions of Y . An example of one such partition is shown in Figure 1.

The posterior (8) can be further simplified as

P (ω|Y ) ∝ P (Y |ω)
T∏
t=1

pzt
z (1− pz)ctpdt

d (1− pd)gt(λbV )at(λfV )ft , (9)
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(a) (b)

Fig. 1. (a) An example of observations Y (each circle represents an observation and numbers represent observation times).

(b) An example of a partition ω of Y . This ω is also described in Example 1.

where the term
∏T
t=1 V

at+ft will be canceled out by the matching initial state and false alarm densities

in P (Y |ω). The likelihood P (Y |ω) can be computed based on the chosen dynamic and measurement

models. For example, the computation of P (Y |ω) for linear dynamic and measurement models can be

found in [27].

The posterior P (ω|Y ) can be applied to both MAP and Bayes estimator approaches to solve the

multi-target tracking problem. In the MAP approach, we first seek ω̂ such that

ω̂ = arg max
ω∈Ω

P (ω|Y ). (10)

Then the states of the targets are estimated based on ω̂.

In the Bayes estimator approach, we look for Bayesian estimates of parameters. For instance, if we

are interested in estimating the state xkt of target with the label k, the MMSE estimate of xkt is:

x̂kt =
∑
ω3τk

∫
xktP (dxkt |ω, Y )P (ω|Y ). (11)

Notice that it considers the contribution of all ω that contain a target with the label k when computing

x̂kt , whereas the MAP approach uses only ω̂. The method proposed in this paper (Algorithm 3) can be

used to find both MAP and Bayes estimators to the multi-target tracking problem.

III. MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) plays a significant role in many fields such as physics, statis-

tics, economics, finance, and engineering [28, 29, 30]. The MCMC method includes algorithms such as

Gibbs sampling [31] and the Metropolis-Hastings algorithm [32, 33]. Beichl and Sullivan described the

Metropolis-Hastings algorithm as “the most successful and influential of all the members of ... the Monte

Carlo Method” [29]. MCMC techniques have been applied to complex probability distribution integration
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problems, counting problems, and combinatorial optimization problems [29]. In some cases, MCMC is the

only known general algorithm that finds a good approximate solution to a complex problem in polynomial

time [13].

MCMC is a general method to generate samples from a distribution π on a space Ω by constructing

a Markov chain M with states ω ∈ Ω and stationary distribution π(ω). We now describe an MCMC

algorithm known as the Metropolis-Hastings algorithm. If M is at state ω ∈ Ω, ω′ ∈ Ω is proposed

following the proposal distribution q(ω, ω′). The move is accepted with an acceptance probability A(ω, ω′)

where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
, (12)

otherwise the sampler stays at ω. With this construction, the detailed balance condition is satisfied, i.e.,

for all ω, ω′ ∈ Ω,

Q(ω, ω′) := π(ω)P (ω, ω′) = π(ω′)P (ω′, ω), (13)

where P (ω, ω′) = q(ω, ω′)A(ω, ω′) is the transition probability from ω to ω′. Hence, M is a reversible

Markov chain. 5

IfM is also irreducible and aperiodic, 6 thenM converges to its stationary distribution by the ergodic

theorem [34]. Hence, for any bounded function f , the sample mean f̂ = 1
N

∑N
n=1 f(ω(n)) converges to

Eπf(ω) as N → ∞, where ω(n) is the state of M at the nth MCMC step and Eπf(ω) is the expected

value of f(ω) with respect to measure π. Notice that (12) requires only the ability to compute the ratio

π(ω′)/π(ω), avoiding the need to normalize π, and this is why MCMC, especially the Metropolis-Hastings

algorithm, can be applied to a wide range of applications.

An ergodic chain M on state space Ω converges to its stationary distribution asymptotically. But a

practical question is how fast M approaches stationarity. One way to measure the rate of convergence

of M to stationarity is the “mixing time” of the Markov chain. Let P be the transition probabilities of

M and let P (n)
ω (·) be the distribution of the state at the nth MCMC step given that M is started from

the initial state ω ∈ Ω. If π is the stationary distribution of M, then the total variation distance at the

5 A Markov chain is reversible with respect to π if it is positively recurrent and the detailed balance condition (13) is satisfied.
6 A Markov chain is irreducible when every state is accessible from every other state. A Markov chain is periodic if there

exists at least one state to which the Markov chain returns with a fixed time period greater than one. A Markov chain is aperiodic

if no such state exists.
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nth MCMC step with initial state ω is defined as

∆ω(n) = ‖P (n)
ω − π‖tv = max

S⊂Ω
|P (n)
ω (S)− π(S)| = 1

2

∑
y∈Ω

|P (n)
ω (y)− π(y)|. (14)

The rate of convergence of M to stationarity can be measured by the mixing time

τω(ε) = min{n : ∆ω(s) ≤ ε for all s ≥ n}. (15)

After the mixing time τω(ε), P (n)
ω (·) for n ≥ τω(ε) is very close to the stationary distribution π.

One approach to bound τω(ε) of a Markov chain with a complex structure is the canonical path method

[13]. In this paper, the canonical path method is used to bound τω(ε) of the Markov chain simulated

by the MCMCDA algorithm given in Section IV. For the remainder of this section, we describe the

canonical path method.

For a finite, reversible and ergodic Markov chain M with state space Ω, consider an undirected graph

G = (V,E) where V = Ω and E = {(x, y) : Q(x, y) > 0} (recall the definition of Q(·, ·) from (13)).

So an edge (x, y) ∈ E indicates that the Markov chain M can make a transition from x to y or from y

to x in a single step. For each ordered pair (x, y) ∈ Ω2, the canonical path γxy is defined as a simple

path7 from x to y in G. In terms of M, the canonical path γxy is a sequence of legal transitions from

x to y in M. Let Γ = {γxy : x, y ∈ Ω} be the set of all canonical paths. Now the mixing time of the

chain is related to the maximum edge loading:

ρ̄ = ρ̄(Γ) = max
e

1
Q(e)

∑
γxy3e

π(x)π(y)|γxy|, (16)

where |γxy| denotes the length of the path γxy. If ρ̄ is not so big, i.e., no single edge is overloaded, then

the Markov chain can mix rapidly. The main result for the canonical path method is as follows [13,35]:

Theorem 1: Let M be a finite, reversible, ergodic Markov chain with loop probabilities P (x, x) ≥ 1
2

for all states x. Let Γ be a set of canonical paths with maximum edge loading ρ̄. Then the mixing time

of M satisfies τω(ε) ≤ ρ̄(log π(x)−1 + log ε−1), for any choice of initial state ω.

IV. SINGLE-SCAN MCMCDA

In this section, we consider a special case of the multi-target tracking problem described in Section II,

in which the number of targets K is known. We begin by specifying the optimal single-scan Bayesian

filter, noting that it is infeasible to implement the optimal filter in practice due to its computational

complexity. We then define the assumed-density single-scan Bayesian filter, which is frequently used in

7 A simple path in a graph is a path with no repeated vertices.
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Fig. 2. Graphical illustration of the optimal single-scan Bayesian filter.

practice as an approximation to the optimal filter. The well-known JPDA filter [1] is an example of this

approach. Although JPDA is less computationally demanding than the optimal single-scan Bayesian filter,

the data association aspect remains intractable. We show, nevertheless, that the single-scan MCMCDA

algorithm finds an ε-good approximate solution to JPDA in polynomial time.

A. Optimal Single-Scan Bayesian Filter

The (optimal) single-scan Bayesian filter for multi-target tracking is a recursive filtering algorithm

in which each measurement is processed in turn and the posterior distribution of the current state is

computed based on the current measurements and the posterior distribution computed at the previous scan.

It resembles an ordinary recursive filter (e.g., a Kalman filter) for single-target tracking, but there are two

major differences: first, the filter must compute the joint posterior of all target states, whose complexity

grows without bound over time; second, the likelihood model for observations factors conditional on the

(unknown) association variable, and so the exact update step must sum over exponentially many possible

associations.

Let Xt = (X1
t , . . . , X

K
t ) be the joint state of all targets at time t. We assume the availability of the

prior distribution P (X0). Now suppose that we are at time t and the optimal single-scan Bayesian filter

has computed the posterior distribution P (Xt−1|y1:t−1) from the previous scan time t−1, where y1:t−1 =

{y1, . . . , yt−1} is a set of all past measurements. The optimal single-scan Bayesian filter computes

P (Xt|y1:t) from the new measurements yt and the previous posterior distribution P (Xt−1|y1:t−1) using

the prediction and measurement update steps. For a graphical illustration, see Figure 2.
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Step 1 (Prediction): Using P (xt−1|y1:t−1), compute the distribution

P (Xt|y1:t−1) =
∫
P (Xt|xt−1, y1:t−1)P (xt−1|y1:t−1)dxt−1

=
∫
P (Xt|xt−1)P (xt−1|y1:t−1)dxt−1, (17)

where the Markovian assumption is used in the second equality and P (Xt|xt−1) is determined by the

dynamics model (1).

Step 2 (Measurement Update): In general, Bayes rule can be applied to compute the desired posterior

P (Xt|y1:t) =
P (yt|Xt, y1:t−1)P (Xt|y1:t−1)∫
P (yt|xt, y1:t−1)P (xt|y1:t−1)dxt

. (18)

But, since we do not know which measurement is originated from which target, we cannot compute

P (yt|Xt, y1:t−1) directly. Instead, we introduce a latent variable ωt to represent a possible association

between nt measurements and K targets and we let Ωt = {ωt} be a set of all possible association

events at time t. The formal definition of Ωt resembles the definition in Section II-B and is given in

Section IV-B.

Using the total probability theorem, we can compute

P (Xt|y1:t) =
∑
ωt∈Ωt

P (Xt|ωt, y1:t)P (ωt|y1:t), (19)

where

P (Xt|ωt, y1:t) =
P (yt|Xt, ωt, y1:t−1)P (Xt|y1:t−1)∫
P (yt|Xt, ωt, y1:t−1)P (Xt|y1:t−1)dxt

.

Because ωt specifies the association between measurements and targets, the term P (yt|Xt, ωt, y1:t−1) in

(19) can be computed easily—according to the standard observation model, it simplifies to a product

of independent likelihood factors, one per target/observation pair. Thus, we can compute P (Xt|y1:t) in

(19); unfortunately, the summation over ωt has exponentially many terms. Not only is this summation

intractable, but as a consequence the posterior representation becomes exponentially more complex at

each time step.

B. Assumed-Density Single-Scan Bayesian Filter

Complexity in filtering problems is often addressed by a generic approach often called assumed-density

filtering [36], in which the posterior state distribution is assumed to belong to a fixed family of density

functions. Each exact update step typically takes the posterior outside this family, but a projection step

then finds the best approximation within the family. Thus, an assumed-density single-scan Bayesian filter

for multi-target tracking uses a simplified approximate representation for the posterior over the joint
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state of the targets. For example, one can make an (incorrect) independence assumption about the joint

posterior, approximating it by a product of marginal distributions:

P (Xt|y1:t) = P (X1
t , . . . , X

K
t |y1:t) ≈

K∏
k=1

P (Xk
t |y1:t). (20)

This assumption is made by the JPDA filter, which has been traditionally used with the Kalman filter,

assuming linear–Gaussian models, i.e., linear dynamic and measurement models and white Gaussian noise

processes [1].8 In fact, the assumed-density method with a factored posterior can be used with the general

dynamics and measurement models defined in Section II. Furthermore, whereas JPDA sums over the

association hypotheses in (19), the single-scan MCMCDA filter described in Section IV-C approximates

this sum efficiently using MCMC.

The independence assumption made in (20) makes it possible to apply a standard recursive filtering

update to each target separately, but only if conditioned on the (unknown) association between targets and

observations. Thus, the measurement update step has to consider possible associations. This update step

has two phases: first, measurement validation (another approximation) identifies the mappings between

observations and targets that are considered plausible under some threshold; then state update computes

the new approximate posterior distribution.

We begin with an (approximate) posterior distribution P̂ (Xk
t−1|y1:t−1) computed from the previous

time t− 1, for each target k, where P̂ (Xk
t |y1:t) approximates P (Xk

t |y1:t) according to the independence

assumption and the measurement validation step described below. At time t, the following three steps show

how the assumed-density single-scan Bayesian filter computes P̂ (Xk
t |y1:t) from the new measurements

yt and the previous posterior distribution P̂ (Xk
t−1|y1:t−1).

Step 1 (Prediction): Similar to the prediction step (17) of the optimal single-scan Bayesian filter, for

each k, we compute

P̂ (Xk
t |y1:t−1) :=

∫
P (Xk

t |xkt−1, y1:t−1)P̂ (xkt−1|y1:t−1)dxkt−1

=
∫
P (Xk

t |xkt−1)P̂ (xkt−1|y1:t−1)dxkt−1. (21)

Step 2 (Measurement Validation): Since there can be a large number of measurements and some

measurements are very unlikely to have originated from a particular target, the state of each target is

8 Recently, JPDA has also been applied to nonlinear problems using a particle filter [37]. Notice that when the dynamics

and measurement model are nonlinear or the noise processes are non-Gaussian, the posterior distribution can be approximated

using techniques such as linearization, unscented filtering [38], interacting multiple models [39], particle filters [40], or other

numerical methods.
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(a) (b)

Fig. 3. (a) An example of measurement validation. For this 2D example, P̂ k(y|y1:t−1) is a Gaussian density with mean

ŷk for k = 1, 2, 3 (shown as a solid triangle). Measurements {yj : j = 1, 2, . . . , 8} are shown as disks. A measurement is

validated for target k if it is inside the shaded region centered at ŷk. (b) Measurement validation encoded as a bipartite graph

G = (U, V,E). An edge between yj ∈ U and k ∈ V indicates that measurement yj is validated for target k and (yj , k) ∈ E.

(The subscript t is omitted.)

estimated from a subset of measurements. The process of selecting a subset of measurements for state

estimation is called measurement validation. Let P̂ k(Y j
t |y1:t−1) be the probability density of having

observation Y j
t given y1:t−1, when Y j

t is a measurement originated from target k. For each k and j,

compute the distribution

P̂ k(Y j
t |y1:t−1) :=

∫
P (Y j

t |xkt , y1:t−1)P̂ (xkt |y1:t−1)dxkt

=
∫
P (Y j

t |xkt )P̂ (xkt |y1:t−1)dxkt , (22)

where the second equality uses the fact the current observation is independent of previous observations

given the current state and P (Y j
t |xkt ) is determined by the measurement model (2). For linear–Gaussian

models, P̂ k(Y j
t |y1:t−1) is a Gaussian distribution and completely determined by its mean and variance.

The measurement yjt is validated for target k if and only if

P̂ k(yjt |y1:t−1) ≥ δk, (23)

where δk are appropriate thresholds. An example of measurement validation is shown in Figure 3(a).

Step 3 (State Estimation): As in the measurement update step in the optimal single-scan Bayesian

filter, we introduce a latent variable ω to represent a feasible association between nt measurements and

K targets and we let Ωt = {ω} be a set of all feasible (joint) association events at time t. For each

ω ∈ Ωt, ω = {(j, k)}, where (j, k) denotes the event that observation j is associated with target k. An
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(a) (b) (c)

Fig. 4. Examples of matchings (feasible association events) based on the measurement validation example given in Figure 3.

association event ω is feasible when (i) for each (j, k) ∈ ω, yjt is validated for target k; (ii) an observation

is associated with at most one target; and (iii) a target is associated with at most one observation.

Let N ≤ nt be the number of validated observations. We encode the feasible association events in a

bipartite graph G = (U, V,E), where U = {yjt : 1 ≤ j ≤ N} is a vertex set of validated observations,

V = {k : 1 ≤ k ≤ K} is a vertex set of target indices, and E = {(u, v) : u ∈ U, v ∈ V, P̂ v(u|y1:t−1) ≥

δv}. An edge (u, v) ∈ E indicates that observation u is validated for target v according to (23). An

example of measurement validation encoded as a bipartite graph is shown in Figure 3(b). A feasible

association event is a matching in G, i.e., a subset M ⊂ E such that no two edges in M share a vertex.

The set of all feasible association events Ωt can be represented as Ωt = M0(G) ∪ · · · ∪MK(G), where

Mk(G) is the set of k-matchings in G. Some examples of matchings or feasible association events are

shown in Figure 4.

Now using the total probability theorem, we can compute the approximate distribution as:

P̂ (Xk
t |y1:t) :=

∑
ω∈Ωt

P̂ (Xk
t |ω, y1:t)P̂ (ω|y1:t)

=
N∑
j=0

βjkP̂ (Xk
t |ωjk, y1:t), (24)

where ωjk denotes the event {ω ∈ Ωt : (j, k) ∈ ω}, ω0k denotes the event that no observation is associated

with target k, and βjk is an association probability, such that

βjk = P̂ (ωjk|y1:t) =
∑

ω:(j,k)∈ω

P̂ (ω|y1:t). (25)

P̂ (Xk
t |ωjk, y1:t) in (24) can be easily computed by considering it as a single-target estimation prob-

lem with a single observation. On the other hand, the computation of βjk requires a summation over

exponentially many association events.
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Notice that even when linear–Gaussian models are assumed, the posterior (24) is no longer a Gaussian

distribution. As explained earlier, the posterior (24) becomes a mixture of posteriors from the previous

time step. Hence, the complexity of the posterior distribution grows exponentially in multi-target tracking

due to uncertainty in measurement-to-target associations. To combat this growth, an assumed-density filter

projects back to a fixed family at each step. In particular, JPDA approximates the posterior for each target

using a moment-matching Gaussian distribution, and assumes that the targets are all independent.

The exact calculation of {βjk} in JPDA is NP-hard [12] and this is the major drawback of JPDA. In

the following sections, we describe the single-scan MCMCDA filter, which approximates the association

probabilities {βjk}, and prove that the running time of the algorithm is polynomial in the size of the

problem.

C. Single-Scan MCMCDA Filter

The single-scan MCMCDA filter follows the same filtering steps as the assumed-density single-scan

Bayesian filter described in Section IV-B, except that the association probabilities {βjk} in (25) are

approximated using MCMC. Since the filtering steps are already described in Section IV-B, this section

describes only the method of approximation.

Based on the parametric false alarm model described in Section II-A and a derivation similar to that

of (7), for each ω ∈ Ωt, the prior P (ω) can be written as

P (ω) ∝ (λfV )N−|ω|p|ω|d (1− pd)K−|ω|. (26)

Then, the posterior of ω ∈ Ωt can be written as

P (ω|y1:t)
(a)
=

1
Z0
P (ω|y1:t−1)P (yt|ω, y1:t−1)

(b)
=

1
Z0
P (ω)P (yt|ω, y1:t−1)

(c)
≈ 1

Z
P (ω)P̂ (yt|ω, y1:t−1)

(d)
=

1
Z
λ
N−|ω|
f p

|ω|
d (1− pd)K−|ω|

∏
(u,v)∈ω

P̂ v(u|y1:t−1)

=: P̂ (ω|y1:t), (27)

where Z0 and Z are normalizing constants; Bayes rule is used in (a); (b) follows from the fact that

ω ∈ Ωt is independent of y1:t−1; (c) follows from the fact that P̂ (yt|ω, y1:t−1) is an approximation of

P (yt|ω, y1:t−1); and the prior (26) is used in (d) and V N−|ω| is canceled by the matching false alarm

density in P̂ (yt|ω, y1:t−1).
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Algorithm 1 Single-scan-MCMCDA
1: INPUT G = (U, V,E), nmc, nbi, θ.

2: OUTPUT {β̂jk}

3: β̂jk = 0 for all j and k

4: choose ω(0) randomly from Ωt

5: for n = 1 to nmc do

6: ω(n) = Single-scan-MCMCDA.single-step

7: (G,ω(n−1), θ) (see Algorithm 2)

8: if n > nbi then

9: for each (yj , k) ∈ ω(n) do

10: β̂jk = β̂jk + 1/(nmc − nbi)

11: end for

12: end if

13: end for

The MCMC data association (MCMCDA) algorithm is an MCMC algorithm whose state space is the

set of all feasible association events Ωt and whose stationary distribution is the posterior P̂ (ω|y1:t) (27).

The single-scan MCMCDA algorithm is shown in Algorithm 1, where θ = {{P̂ v(u|y1:t−1)}, λf, pd,K,N}

along with its MCMC step described in Algorithm 2. The inputs to Algorithm 1 are the graph G, the

number of samples nmc, the number of burn-in samples nbi, and θ. The input θ contains likelihoods

{P̂ v(u|y1:t−1)} and model parameters λf, pd,K, and N . Algorithm 1 computes the approximate associ-

ation probabilities {β̂jk}, which can be used in (24) to compute the approximate posterior distribution

P̂ (Xk
t |y1:t). Algorithm 2 uses the MCMC transition rules from [13] and it describes how the MCMCDA

algorithm updates its states. For the example given in Figure 3, the move from Figure 4(a) to Figure 4(b)

is a switch move. The move from Figure 4(c) to Figure 4(b) is an addition move while its reverse is

a deletion move. However, the move from Figure 4(a) to Figure 4(c) is not a legal single-step move

according to Algorithm 2. Since we have a uniform proposal distribution, A(ω, ω′) = min
(

1, π(ω′)
π(ω)

)
,

where π(ω) = P̂ (ω|y1:t) from (27).

Notice that, in line 2 of Algorithm 2, a self-loop transition probability of 1/2 is introduced to make the

analysis easier (see p.18 of [41] for more detail). In practice, however, the self-loop transition probability

in line 2 can be set close to 0 for faster convergence.
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Algorithm 2 Single-scan-MCMCDA.single-step
1: INPUT G = (U, V,E), ω, θ

2: OUTPUT ω

3: sample Z from Unif[0, 1]

4: if Z < 1
2 then

5: ω′ = ω

6: else

7: choose e = (u, v) ∈ E uniformly at random

8: if e ∈ ω then

9: ω′ = ω − e (deletion move)

10: else if both u and v are unmatched in ω then

11: ω′ = ω + e (addition move)

12: else if exactly one of u and v is matched in ω and e′ is the matching edge then

13: ω′ = ω + e− e′ (switch move)

14: else

15: ω′ = ω

16: end if

17: end if

18: ω = ω′ with probability A(ω, ω′)

D. Analysis

Let M be the Markov chain simulated by Algorithm 2. Since the self-loop probability is nonzero, M

is aperiodic. It can be easily seen that M is irreducible, i.e., all states communicate, for example via the

empty matching. In addition, since Algorithm 2 uses the Metropolis-Hastings kernel, the detailed balance

condition (13) is satisfied and M is reversible. Hence, by the ergodic theorem, the chain converges to

its stationary distribution [34].

Let us first take a look at the complexity of the problem. As noted earlier, the state space of the

Markov chain M is Ωt = M0(G) ∪ · · · ∪MK(G). For each k, |Mk(G)| ≤
(
K
k

)
N !

(N−k)! with equality if

the subgraph of G with the k chosen vertices in V is a complete bipartite graph, i.e., all observations
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are validated for all k chosen targets. Hence, we can bound the size of Ωt as

|Ωt| = |M0(G)|+ · · ·+ |MK(G)| ≤
K∑
k=0

(
K

k

)
N !

(N − k)!
. (28)

Except for trivial cases, the size of the state space grows exponentially as the number of targets or the

number of observations increases, hence the exact calculation of JPDA by enumeration is not feasible

when the number of targets or the number of observations is large. (See Section IV-E for experimental

results.)

We assume that each likelihood term in (27) can be bounded as L ≤ P̂ v(u|y1:t−1) ≤ L̄, for all (u, v) ∈

E. The lower bound L = min δk is guaranteed by measurement validation. In JPDA, measurement

validation is used to reduce the number of feasible association events. However, we will see that it is

also required in the proof of polynomial-time approximation. The upper bound L̄ can be precomputed

based on P̂ v(u|y1:t−1). Here, we are making the reasonable assumption that P̂ v(u|y1:t−1) ≤ L̄ <∞ for

all (u, v) ∈ E. (An example of L̄ for linear–Gaussian models can be found in [42].)

The following theorems show that the single-scan MCMCDA algorithm provides a fully polynomial

randomized approximation scheme for JPDA. See Appendix VII-A for the proof.

Theorem 2: Suppose that λf > 0 and 0 < pd < 1. Then the mixing time of the Markov chain M is

bounded by

τω(ε) ≤ 4R4K2N(m0(K,N) + log ε−1)

for all ω ∈ Ωt, where

R = max
{

1,
pdL̄

λf(1− pd)
,
λf(1− pd)

Lpd

}
,

m0(K,N) = K log
m1

m2
+ log

m3(K,N)
m4(K,N)

+
K+1∑
k=1

log k +
N∑
n=1

log n

m1 = max{1, L̄}

m2 = min{1, L}

m3(K,N) = max
0≤k≤K

{λN−kf pkd(1− pd)K−k}

m4(K,N) = min
0≤k≤K

{λN−kf pkd(1− pd)K−k}

Remark 1: If 0.5 < pd < 1 and λf < 1 − pd, then m3(K,N) = λN−Kf pKd and m4(K,N) = λNf (1 −

pd)K . So m3(K,N)/m4(K,N) =
(

pd
λf(1−pd)

)K
and K is the only remaining exponent.

Remark 2: Let τ̄(ε) be the upper bound found in Theorem 2. τ̄(ε) is polynomial in K and N . If

m3(K,N)/m4(K,N) does not grow fast, e.g., Remark 1, τ̄(ε) = O(K2N(K logK+N logN+log ε−1)).

If K is fixed, τ̄(ε) = O(N(N logN + log ε−1)).
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Let p(ω) be the distribution of the states of M after simulating Algorithm 2 for at least τ̄(ε) steps.

Then the total variation distance satisfies ‖p − π‖tv ≤ ε. So we can sample from p to estimate {βjk}.

However, there is a small bias in our estimates since we are not sampling directly from π. The following

theorem gives an upper bound on the number of samples needed for finding good estimates. For the

proof, see Appendix VII-B.

Theorem 3: Let 0 < ε1, ε2 ≤ 1 and 0 < η < 0.5. Suppose that ‖p−π‖tv ≤ ε for ε ≤ ε1ε2/8. Then, with

a total of 504ε−2
1 ε−1

2 dlog η−1e samples from p, we can find estimates β̂jk for βjk with probability at least

1−η, such that, for βjk ≥ ε2, β̂jk estimates βjk within ratio 1+ ε1, i.e., (1− ε1)βjk ≤ β̂jk ≤ (1+ ε1)βjk,

and, for βjk < ε2, |β̂jk − βjk| ≤ (1 + ε1)ε2.

Remark 3: Following Remark 2, for fixed K, τ̄(ε) = O(N(N logN + log ε−1)). Combining this fact

with Theorem 3, the time complexity of the overall procedure is

ñmc = O(ε−2
1 ε−1

2 log η−1N(N logN + log(ε−1
1 ε−1

2 ))).

Hence, with a total of ñmc samples, Algorithm 2 finds estimates β̂jk for βjk with probability at least 1−η,

such that, for βjk ≥ ε2, β̂jk estimates βjk within ratio 1 + ε1, and, for βjk < ε2, |β̂jk−βjk| ≤ (1 + ε1)ε2.

We can simplify further by letting ε0 = ε1ε2. Then the time complexity is O(ε−2
0 log η−1N(N logN +

log(ε−1
0 ))).

E. Simulation Results

To demonstrate Theorem 3, we use a scenario in which there are five predicted observations and 16

actual observations over a 4 × 4 two-dimensional region (see Figure 5(a)). The predicted observations

are {[0
0 ], [0

1 ], [ 0
−1 ], [1

0 ], [−1
0 ]} and the actual observations are[

0.33
0.07

]
,
[−1.50

0.58

]
,
[−0.02
−0.77

]
,
[−0.01
−0.66

]
,
[−0.44
−1.19

]
,
[

1.45
−1.30

]
,
[−0.87
−0.11

]
,
[

1.49
−1.05

]
,[−0.69

0.89

]
,
[−1.16

0.81

]
,
[−0.43

0.63

]
,
[−0.97
−0.30

]
,
[

0.13
−0.26

]
,
[−1.43

0.95

]
,
[

0.45
−0.40

]
,

[
1.37
0.74

]
P̂ k(Y j

t |y1:t−1) has a Gaussian distribution with zero mean and covariance Bk = diag(1, 1) for all k. The

other parameters used in this simulation are: λf = 0.5, pd = 0.8, and δk = P ((yjt−ŷk)T(Bk)−1(yjt−ŷk) =

4) for all k.

The true values of {βjk} are computed using JPDA. In order to study the convergence of the single-

scan MCMCDA algorithm, we ran 100 independent runs with initial states randomly chosen from Ωt. For

each run, two types of estimates are made at each MCMC step: (type r = 1) β̂1
jk, which are computed

after τ̄(ε) burn-in samples; and (type r = 2) β̂2
jk, which are computed after 10, 000 burn-in samples.
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(a) (b)

Fig. 5. (a) Predicted observations (crosses) and actual observations (dots). (b) The largest and smallest estimation ratios

(Rr, R̄r) for two types of estimates (r ∈ {1, 2}) each computed from 100 independent single-scan MCMCDA runs. The

estimation ratios for r = 1 start from τ̄(ε) = 8.4 × 106 and the estimation ratios for r = 2 start from 10, 000. The dotted

ε1-tube centered at 1 represents the goal estimation ratio ε1. If (Rr, R̄r) is completely contained in (1− ε1, 1 + ε1), we have

achieved our goal estimation ratio. Theoretically, ñmc = 11.5 × 106 samples suffice to ensure that the estimate using τ̄(ε)

burn-in samples approximates the true value with ratio less than ε1 with probability at least 1− η. But both estimates achieve

the estimation ratio of ε1 much faster than ñmc.

Let β̂rjk(m,n) be the estimate made at the nth MCMC step for the mth run, for type r ∈ {1, 2}. Using

ε1 = 0.1, ε2 = 0.05, η = 0.05, and ε = ε1ε2/8, we have τ̄(ε) = 8.4× 106.

Based on Theorem 3, ñmc = 11.5× 106 samples suffice to ensure that the estimate using τ̄(ε) burn-in

samples approximates the true value with ratio less than ε1 with probability at least 1 − η. In order to

show the progressive improvement of estimation ratios, we show the worst estimation ratios over all

test cases as a function of the number of samples in Figure 5(b). Hence, if the worst estimation error

ratios are within ratio less than ε1 after ñmc samples, i.e., the desired estimation ratio is satisfied for

all test cases, it is certain that the statement of Theorem 3 is satisfied. Since there are upper and lower

estimation ratio bounds in Theorem 3, we compute R̄r(n), the largest estimation ratio, and Rr(n), the

smallest estimation ratio over all test cases as a function of the number of samples and they are defined

below.

Figure 5(b) shows a pair of envelopes, one for each type of estimate. The top curve of an envelope

plots the largest estimation ratio over all (j, k) pairs and all 100 runs

R̄r(n) = max
m=1,...,100

max
jk

β̂rjk(m,n)
βjk
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and the bottom curve plots the smallest estimation ratio over all (j, k) pairs and all 100 runs

Rr(n) = min
m=1,...,100

min
jk

β̂rjk(m,n)
βjk

for r ∈ {1, 2}, where n is the number of MCMC samples. The envelope for type r = 1 starts from

n = τ̄(ε) and type r = 2 starts from n = 10, 000.

A couple of observations can be made from Figure 5(b). The envelope (R1(n), R̄1(n)) is completely

contained in (1− ε1, 1 + ε1) for all n > ñmc, hence, MCMCDA approximates the true value with ratio

less than ε1 with ñmc = 11.5×106 samples. Since the estimation ratios are satisfied for all test cases, they

are certainly satisfied with probability at least 1− η and Theorem 3 is verified. Both types of estimates

(r = 1 and r = 2) achieve the estimation ratio of ε1 much faster than ñmc. As frequently observed in

many practical applications of MCMC, we see that the algorithm requires a significantly smaller number

of burn-in samples than the theorem requires. This is not especially surprising since the theorem is based

on a worst-case analysis. For this example, 10,000 burn-in samples were enough, i.e., 800 times less than

τ̄(ε).

In this example, JPDA took 134.1 seconds. With 10,000 burn-in samples, 95% of MCMCDA runs are

within the goal approximation ratio of ε1 in 33.9 seconds. Both algorithms are implemented in MATLAB

on a PC with a 2.6-GHz Intel processor.

V. MULTI-SCAN MCMCDA

The single-scan MCMCDA algorithm described in Section IV assumes a fixed, known number of

targets. This assumption leads to a simple filtering scheme, but in most situations of interest the number

of targets is unknown and changes over time. Furthermore, a single-scan algorithm that makes approxima-

tions (such as measurement validation and independence) to avoid complexity may end up being unable

to maintain tracks over long periods because it cannot revisit previous, possibly incorrect, association

decisions in the light of new evidence. For these reasons, methods for solving the general multi-target

tracking problem described in Section II often adopt a multi-scan design, maintaining state in the form

of both the posterior approximation and the observation history. This section describes a multi-scan

MCMCDA algorithm that can handle unknown numbers of targets. The solution space Ω for this algorithm

contains association histories over multiple time steps, as well as considering all possible numbers of

targets at each step, and is therefore much larger than the solution space considered by a single-scan

algorithm. The multi-scan MCMCDA algorithm features efficient mechanisms to search over this large

solution space in addition to birth and death moves to add or remove tracks. The multi-scan MCMCDA
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algorithm is presented in Section V-A and its recursive online version is described in Section V-B. In

Section V-C, we compare the performance of MCMCDA against MHT and multi-scan NNF.

A. Multi-Scan MCMCDA Algorithm

The multi-scan MCMCDA algorithm is described in Algorithm 3. It is an MCMC algorithm whose state

space is Ω as defined in Section II-B and whose stationary distribution is the posterior (9). The proposal

distribution for MCMCDA consists of eight moves grouped into five types as follows: (1) birth/death

move pair; (2) split/merge move pair; (3) extension/reduction move pair; (4) track update move; and (5)

track switch move. (See Figure 7.) We index each move by an integer such that m = 1 for a birth move,

m = 2 for a death move and so on. The move m is chosen randomly from the distribution ξK(m) where

K is the number of tracks of the current partition ω. When there is no track, we can only propose a

birth move, so we set ξ0(m = 1) = 1 and 0 for all other moves. When there is only a single target,

we cannot propose a merge or track switch move, so ξ1(m = 4) = ξ1(m = 8) = 0. For other values

of K and m, we assume ξK(m) > 0. The inputs for MCMCDA are the set of all observations Y , the

number of samples nmc, the initial state ωinit, and the model parameters pz, pd, and λb. When we want to

estimate Eπf of a bounded function f : Ω → Rn, MCMCDA can also take the function f as an input.

At each step of the algorithm, ω is the current state of the Markov chain. The acceptance probability

A(ω, ω′) is defined in (12) where π(ω) = P (ω|Y ) from (9). Notice that MCMCDA can provide both

Bayes estimator and MAP solutions to the multi-target tracking problem: the output f̂ approximates the

Bayesian posterior expectation Eπf and ω̂ approximates the MAP estimate arg maxω∈Ω P (ω|Y ). The

computation of ω̂ can be viewed as simulated annealing [43] at a constant temperature.

An MCMC algorithm can be specialized and made more efficient by incorporating domain-specific

knowledge into the proposal distribution q(ω, ω′). For example, the MCMC algorithm by Pasula et al. [44]

for citation matching incorporates a clustering method by McCallum et al. [45] to improve the perfor-

mance of the algorithm. This method precomputes overlapping sets of “possibly matching” records and

restricts the MCMC proposal distribution to consider associating record pairs only from these sets. This

method prevents proposals that are certain to be rejected as impossible.

In multi-target tracking, we can make two assumptions: (A1) the maximum directional speed of any

target in R is less than some v̄; and (A2) the number of consecutive missing observations of any track is

less than some d̄. The first assumption (A1) is reasonable in a target-tracking scenario since, in many cases,

the maximum speed of a vehicle is generally known based on the vehicle type and terrain conditions. We

assume that the value of v̄ is chosen large enough such that it accommodates measurement noise (e.g.,
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Algorithm 3 Multi-scan-MCMCDA
1: INPUT Y, nmc, ωinit, pz, pd, λb, f : Ω→ Rn

2: OUTPUT ω̂, f̂

3: ω = ωinit; ω̂ = ωinit; f̂ = 0

4: for n = 1 to nmc do

5: propose ω′ based on ω (see sections V-A.1 to V-A.5)

6: sample u from Unif[0, 1]

7: ω = ω′ if u < A(ω, ω′)

8: ω̂ = ω if P (ω|Y )/P (ω̂|Y ) > 1

9: f̂ = n−1
n f̂ + 1

nf(ω)

10: end for

adding a multiple of the standard deviation of the measurement noise). The second assumption (A2) is

a user-defined parameter. Let pdt(s) = 1− (1− pd)s be the probability that an object is observed at least

once out of s measurement times. Then, for given p̄dt, we set d̄ ≥ log(1− p̄dt)/ log(1− pd) to detect a

track with probability at least p̄dt. For example, given pd = 0.7 and p̄dt = 0.99, a track is detected with

probability larger than 0.99 for d̄ ≥ 4. We will now assume that these two new conditions (A1–2) are

added to the definition of Ω so each element ω ∈ Ω satisfies these two additional assumptions. In the

following description of the multi-scan MCMCDA algorithm, we also assume that a track contains at

least two measurements for computational efficiency.

According to (A1–2), we can determine whether two measurements at different times can be generated

from the same target or not. For example, see Figure 6. Let’s consider y1
1 in Figure 6, a measurement

made at t = 1. If y1
1 is a measurement from a target, then a measurement of this target at time t = 2 must

be in the range denoted by d = 1 centered at y1
1 . Hence, y1

2 can be a measurement from this target while

y2
2 cannot be a measurement from this target. We formalize this concept into the following data structure.

Let L(y, t, d) be a set of all measurements at time t + d that can be associated with a measurement

y ∈ Rny , i.e.,

L(y, t, d) = {ykt+d ∈ yt+d : ϕ(y, ykt+d) ≤ d · v̄}, (29)

where d ∈ {1, . . . , d̄}, and ϕ : Rny ×Rny → R is an appropriate metric, e.g., for a Cartesian coordinate

system, ϕ is induced by the Euclidean norm.

For our example shown in Figure 6, L(y1
1, t = 1, d = 1) = {y1

2}, L(y1
1, t = 1, d = 2) = {y1

3}, and
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Fig. 6. An example to illustrate (A1) and (A2). Circles represent measurements (positions of targets in 2D). yj
t is the jth

measurement made at time t. The maximum directional speed v̄ is shown in the bottom left corner. The sampling period is 1.

Suppose that the measurement y1
1 is generated from a target. A measurement of this target at time t = 2 must be in the range

denoted by d = 1 centered at y1
1 . A measurement of this target at time t = 3 must be in the range denoted by d = 2 centered at

y1
1 . A measurement of this target at time t = 4 must be in the range denoted by d = 3 centered at y1

1 . If d̄ = 3, there cannot be

a track whose measurements are only y1
1 and y1

5 (or y1
1 and y2

5) since such track contains 4 consecutive missing measurements.

L(y1
1, t = 1, d = 3) = {y1

4, y
2
4}. The use of L(y, t, d) makes the algorithm more scalable since distant

observations will be considered separately and makes the computation of the proposal distribution easier.

It is similar to the gating technique used in MHT but L(y, t, d) in MCMCDA is fixed for a given set of

observations. We fix L(y, t, d) so that the proposal distribution q(ω, ω′) can be computed consistently.

We now describe each move of the sampler in detail. First, let ζ(d) be a distribution of a random

variable d taking values from {1, 2, . . . , d̄}. We assume the current state of the chain is ω = ω0∪ω1 ∈ Ω,

where ω0 = {τ0} and ω1 = {τ1, . . . , τK}. The proposed partition is denoted by ω′ = ω′0 ∪ω′1 ∈ Ω. The

proposal distribution q(ω, ω′) can be computed by keeping track of how ω is modified to form ω′. Note

the abuse of notation below with indexing of time, i.e., when we say τ(ti), ti means the time at which

a target corresponding to the track τ is observed i times.

1) Birth and Death Moves (Figure 7 , a ↔ b): For a birth move, we increase the number of tracks

from K to K ′ = K+ 1 and select t1 uniformly at random (u.a.r.) from {1, . . . , T −1} as the appearance

time of a new track. Let τK′ be the track of this new object. Then we choose d1 from the distribution

ζ. Let LB(t1, d1) = {yjt1 ∈ yt1 : L(yjt1 , t1, d1) 6= ∅, yjt1 6∈ τk(t1), k = 1, . . . ,K}. LB(t1, d1) is a set of

observations at t1 such that y ∈ LB(t1, d1) does not belong to other tracks and L(y, t1, d1) is not empty.

We choose τK′(t1) u.a.r. from LB(t1, d1). If LB(t1, d1) is empty, the move is rejected since the move is

not reversible. Once the initial observation is chosen, we then choose the subsequent observations for the

track τK′ . For i = 2, 3, . . ., we choose di from ζ and choose τK′(ti) u.a.r. from L(τK′(ti−1), ti−1, di) \
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Fig. 7. Graphical illustration of MCMCDA moves (associations are indicated by dotted lines and hollow circles are false

alarms). Each move proposes a new joint association event ω′ that is a modification of the current joint association event ω.

The birth move proposes ω′ by forming a new track from the set of false alarms ((a) → (b)). The death move proposes ω′

by combining one of the existing tracks into the set of false alarms ((b) → (a)). The split move splits a track from ω into

two tracks ((c) → (d)) while the merge move combines two tracks in ω into a single track ((d) → (c)). The extension move

extends an existing track in ω ((e) → (f)) and the reduction move reduces an existing track in ω ((f) → (e)). The track update

move chooses a track in ω and assigns different measurements from the set of false alarms ((g) ↔ (h)). The track switch move

chooses two track from ω and switches some measurement-to-track associations ((i) ↔ (j)).

{τk(ti−1 + di) : k = 1, . . . ,K} unless this set is empty. But, for i = 3, 4, . . ., the process of adding

observations to τK′ terminates with probability γ, where 0 < γ < 1. If |τK′ | ≤ 1, the move is rejected.

We then propose this modified partition where ω′1 = ω1∪{τK′} and ω′0 = {τ0 \τK′}. For a death move,

we simply choose k u.a.r. from {1, . . . ,K} and delete the kth track and propose a new partition where

ω′1 = ω1 \ {τk} and ω′0 = {τ0 ∪ τk}.

2) Split and Merge Moves (Figure 7 , c↔ d): For a split move, we select τs(tr) u.a.r. from {τk(ti) :

|τk| ≥ 4, i = 2, . . . , |τk| − 2, k = 1, . . . ,K}. Then we split the track τs into τs1 and τs2 such that

τs1 = {τs(ti) : i = 1, . . . , r} and τs2 = {τs(ti) : i = r + 1, . . . , |τs|}. The modified track partition

becomes ω′1 = (ω1 \ {τs})∪ {τs1} ∪ {τs2} and ω′0 = ω0. For a merge move, we consider the following

set of possible merge move pairs:

M = {(τk1(tf ), τk2(t1)) : τk2(t1) ∈ L(τk1(tf ), tf , t1 − tf ),

f = |τk1 | for k1 6= k2, 1 ≤ k1, k2 ≤ K}.

We select a pair (τs1(tf ), τs2(t1)) u.a.r. from M . The tracks are combined into a single track τs = τs1∪τs2 .

Then we propose a new partition where ω′1 = (ω1 \ ({τs1} ∪ {τs2})) ∪ {τs} and ω′0 = ω0.
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3) Extension and Reduction Moves (Figure 7 , e↔ f ): In a track extension move, we select a track

τ u.a.r. from K available tracks in ω. We reassign observations for τ after the disappearance time t|τ |

as done in the track birth move. For a track reduction move, we select a track τ u.a.r. from K available

tracks in ω and r u.a.r. from {2, . . . , |τ | − 1}. We shorten the track τ to {τ(t1), . . . , τ(tr)} by removing

the observations assigned to τ after the time tr+1.

4) Track Update Move (Figure 7 , g ↔ h): In a track update move, we select a track τ u.a.r. from

K available tracks in ω. Then we pick r u.a.r. from {1, 2, . . . , |τ |} and reassign observations for τ after

the time tr as done in the track birth move.

5) Track Switch Move (Figure 7 , i↔ j): For a track switch move, we select a pair of observations

(τk1(tp), τk2(tq)) from two different tracks such that, τk1(tp+1) ∈ L(τk2(tq), tq, d) and τk2(tq+1) ∈

L(τk1(tp), tp, d′), where d = tp+1 − tq, d′ = tq+1 − tp and 0 < d, d′ ≤ d̄. Then we let

τk1 = {τk1(t1), . . . , τk1(tp), τk2(tq+1), . . . , τk2(t|τk2 |)}

τk2 = {τk2(t1), . . . , τk2(tq), τk1(tp+1), . . . , τk1(t|τk1 |)}.

The main result of this section is that MCMCDA is an optimal Bayesian filter in the limit. Let M be

the Markov chain specified by Algorithm 3. Then we have:

Theorem 4: Suppose that 0 < pz, pd < 1 and λb, λf > 0. If ζ(d) > 0 for all d ∈ {1, . . . , d̄}, then the

Markov chain M is ergodic and f̂ → Eπf as nmc →∞.

See Appendix VII-C for the proof of the theorem. For a numerical demonstration of the theorem, see

Section V-C.5.

B. Online MCMCDA

The MCMCDA algorithm described in previous section is a batch algorithm and its computational

complexity grows as more measurements are collected. In filtering, since recent measurements are

more relevant to the current states, good estimates of the current states can still be found from recent

measurements [46]. Based on this idea, we propose an online MCMCDA algorithm whose estimates are

based on measurements from a window of time [tcur − twin + 1, . . . , tcur], where tcur is the current time

and twin is the size of a window. Hence, at all times, only finitely many measurements are kept by the

algorithm. This online implementation of MCMCDA, shown in Algorithm 4, is suboptimal because it

considers only a subset of past measurements.

At each time step, we use the previous MAP estimate to initialize MCMCDA and run MCMCDA on

the measurements Yw(tcur) = {yjt : 1 ≤ j ≤ nt, tcur − twin + 1 ≤ t ≤ tcur} belonging to the current

window. At time tcur, the measurements at time tcur − twin are removed from Yw and a set of newly
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Algorithm 4 Online-MCMCDA (at time tcur)
1: INPUT: ω̂(tcur − 1), Yw(tcur − 1), Ynew(tcur), nmc, pz, pd, λb, f : Ω→ Rn

2: OUTPUT: ω̂(tcur), Yw(tcur), f̂(tcur)

3: Yw(tcur) = {yjt ∈ Yw(tcur − 1) : tcur − twin + 1 ≤ t ≤ tcur}

4: add new measurements Ynew(tcur) into Yw(tcur)

5: ωinit = {τ(t) ∈ ω̂(tcur − 1) : tcur − twin + 1 ≤ t ≤ tcur}

6: [ω̂(tcur), f̂(tcur)] = Multi-scan-MCMCDA (Yw(tcur), nmc, ωinit, pz, pd, λb, f) (see Algorithm 3)

arrived measurements Ynew(tcur) is appended to Yw(tcur). Any delayed measurements are inserted into the

appropriate slots. Then, we initialize the Markov chain with the previously estimated tracks and execute

Algorithm 3 on Yw(tcur). The algorithm is summarized in Algorithm 4. The inputs for online MCMCDA

at time tcur are the previous MAP estimate ω̂(tcur−1), the existing set of measurements Yw(tcur−1), and

the set of new measurements Ynew(tcur). The other inputs are the same as Algorithm 3. Other estimates

such as state estimates can be computed using the function f or ω̂(tcur). Simulation results from online

MCMCDA can be found in Section V-C.4.

C. Simulation Results

In this section, the performance of multi-scan MCMCDA is evaluated and compared against MHT

[47] and multi-scan NNF [48]. We consider surveillance over a rectangular region on a plane, R =

[0, 1000]× [0, 1000]. The state vector is x = [x, y, ẋ, ẏ]T where (x, y) is a position on R along the usual

x and y axes and (ẋ, ẏ) is a velocity vector. Linear dynamics and a linear measurement model are used:

xkt+1 = Axkt +Gwkt yjt = Cxkt + vjt (30)

where

A =


1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

 , G =


T 2

s /2 0

0 T 2
s /2

Ts 0

0 Ts

 ,

C =

 1 0 0 0

0 1 0 0

 , Ts is the sampling period, wkt is a zero-mean Gaussian process with covariance

Q = diag(100, 100), and vjt is a zero-mean Gaussian process with covariance R = diag(100, 100).

The complexity of multi-target tracking problems can be measured by several metrics: (1) the intensity

of the false alarm rate λf; (2) the detection probability pd; and (3) the density of tracks. The problem
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gets more challenging with increasing λf, decreasing pd, and increasing density of tracks. The number

of tracks per se may not make the problem more difficult if they are scattered apart; the difficulty arises

when there are many tracks crossing and moving close to each other; this is when the ambiguity of data

association is greatest. Hence, we consider only situations in which tracks move very closely so we can

control the density of tracks by the number of tracks.

We study the performance of the MCMCDA algorithm against multi-scan NNF and MHT by varying

the parameters listed above. To make the comparison easier, we take the MAP approach, in which the

states of targets are estimated from ω̂ computed from Algorithm 3. The multi-scan NNF algorithm is

a batch-mode, nearest-neighbor, multi-target tracking algorithm. Initially, all observations are unmarked.

Unmarked observations are considered false alarms. The algorithm first picks two unmarked observations

at different times to estimate an initial state. Then it forms a candidate track by picking the unmarked

observations for the subsequent time step that are closest to the predicted states. The candidate track is

validated as a track and observations associated to the candidate track are marked if the marginal of the

candidate track exceeds a threshold. The process is repeated until no more tracks can be found. For a

more detailed description of the multi-scan NNF algorithm, see [48].

Based on our model described above and in Section II, we have generated a variety of scenarios.

In particular, in all cases, except for the online tracking case, half of the new objects appear from the

bottom left quadrant of R and the other half appear from the the bottom right quadrant. (The actual initial

positions are chosen randomly from a 200 × 200 region in each quadrant.) They all move diagonally

so that each group of tracks crosses the other group in the middle of R. The targets also move very

close to each other and there are crossovers within each group. All targets are present from t = 1 to

t = T . In order to measure the density of tracks, the distance between every pair of targets at each

time is computed from a test case (K = 100) used in Section V-C.1. Then, for each target, the numbers

of neighboring targets are counted at different target-to-target distance ranges with an interval of 50.

Figure 8(a) shows the mean number of neighboring targets at different distance ranges while Figure 8(b)

shows the maximum number of neighboring targets at different distance ranges. In this example, at

t = 5, the mean number of neighboring targets with distance less than 50 is 13 and some targets have

25 neighboring targets. For distance less than 100, the mean number of neighboring targets is 42 and

some targets have 73 neighboring targets. Based on the dynamics and measurement noise models (30),

the effective overall standard deviation in two dimension is 28.3. Hence, the distance of 100 is 3.5 times

the effective standard deviation.

Since the number of targets is not fixed, it is difficult to compare algorithms using a standard criterion
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(a) Mean number of neighboring targets (b) Maximum number of neighboring targets

Fig. 8. Histograms of the number of neighboring targets from the test case (K = 100) used in Section V-C.1 at a different

target-to-target distance range and at each simulation time (t). Each simulation time (t) is shown in a different color. The height

of each bar represents the number of neighboring targets with distances belonging to the corresponding range. (For instance, in

subfigure (a), there are on average 23 targets with distances between 100 and 150 at t = 4.)

such as the mean squared error. Instead, we use a performance measure, called F1, which is frequently

used in the information retrieval literature [49] and has been used in particular for evaluating data-

association-like methods in record matching [50]. The F1 measure is defined in terms of recall and

precision. Recall is the ratio of correct associations made by an algorithm divided by the total number

of correct associations. Precision is the ratio of correct associations made by an algorithm divided by the

total number of associations made by the algorithm. The F1 measure is a harmonic mean between recall

(r) and precision (p) with an equal weight and defined as:

F1(r, p) =
2rp
r + p

. (31)

Recall and precision measure the effectiveness of an algorithm [49]; the higher the value of the F1

measure, the more effective the algorithm is.

Both MCMCDA and multi-scan NNF algorithms are written in C++ with MATLAB interfaces. We have

used the C++ implementation of MHT [47], which implements pruning, gating, clustering, N -scan-back

logic and k-best hypotheses. The parameters for MHT are fine-tuned so that it gives similar performance

to that of MCMCDA when there are 10 targets: the maximum number of hypotheses in a group is 1,000,

the maximum track tree depth is 5, and the maximum Mahalanobis distance is 11.8. All simulations are

run on a PC with a 2.6-GHz Intel processor.

1) Number of Tracks: In this experiment, we vary K from 10 to 100. The other parameters are held

fixed: R = [0, 1000]× [0, 1000], T = 10, pd = 0.9, λfV = 1, λbV = K/T , pz = .0001, d̄ = 5, v̄ = 100
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(a) F1 measure as a function of K (b) Average running time as a function of K

(c) F1 measure as a function of λfV (d) F1 measure as a function of pd

Fig. 9. Simulation results. Multi-scan MCMCDA is compared against the multi-scan NNF [48] and MHT [47].

unit lengths per unit time. A uniform mass function is used for each ξk(·) and ζ(d) is computed based

on pd. For each value of K, we randomly generated 10 test cases. The initial state of MCMCDA is

computed using the multi-scan NNF algorithm and 50,000 samples are used in MCMCDA. For each K,

the average F1 measure and running time are computed from the 10 test cases (for MCMCDA, we also

average over 10 runs per test case). The average F1 measure computed at each value of K is shown in

Figure 9(a). The average running times of the three algorithms are shown in Figure 9(b) (the running time

of MCMCDA includes the initialization step). Although the maximum number of hypotheses of 1,000

per group is a large number, with increasing numbers of tracks, the performance of MHT deteriorates

due to pruning. The F1 measure for multi-scan NNF is just above 0.5 even when there are only ten

targets. MCMCDA shows superior performance against both MHT and multi-scan NNF. In this example,

the multi-scan NNF performs better than MHT at higher numbers of targets. This is due to the fact that

all targets are present from t = 1 to t = T . Another striking difference is that the running times of both

multi-scan NNF and MCMCDA are significantly less than that of MHT.
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2) False Alarms: Now the settings are the same as Section V-C.1 but we vary the false alarm rate while

the number of tracks is fixed at K = 10. The false alarm rate is varied from λfV = 1 to λfV = 100 with

an increment of 10. For each value of λfV , we randomly generated 10 test cases and MCMCDA is run

10 times per test case. Again, 50,000 samples are used for MCMCDA. The average F1 measures for the

three algorithms at different false alarm rates are given in Figure 9(c). The results show that MCMCDA

performs well at high false alarm rates. The multi-scan NNF algorithm suffers because it finds too many

spurious tracks (poor precision) and MHT becomes hopelessly confused, finding no correct associations

at λfV ≥ 80.

3) Detection Probability: The detection probability pd is varied from 0.3 to 0.99 with an increment

of 0.1, except the last increment which is 0.09, while keeping the other parameters as in the previous

experiments except K = 10 and λfV = 1. For each value of pd, we randomly generated 10 test cases and

MCMCDA is run 10 times per test case. Again, 50,000 samples are used for MCMCDA. The average F1

measures for three different algorithms at different detection probabilities are shown in Figure 9(d). The

overall performance of MCMCDA is better than that of MHT. MHT only performs slightly better than

MCMCDA at pd = 0.99. The running times of both MCMCDA and MHT are comparable in this case

(MCMCDA was about 1 second faster than MHT for all cases except when pd = 0.99). The multi-scan

NNF algorithm performed very poorly.

Although, in theory, MHT gives an optimal solution in the sense of MAP, it performs poorly in practice

when the detection probability is low or the false alarm rate is high. This is due to the heuristics, such as

pruning and N -scan-back techniques, that are required to limit complexity. They work well when a few

hypotheses carry most of the weight. (This is why MHT performed slightly better than MCMCDA when

pd = 0.99.) When the detection probability is low or the false alarm rate is high, however, there are many

hypotheses with appreciable weights and there is no small set of dominating hypotheses, so MHT cannot

perform well. A major advantage of the MCMCDA algorithm is that its running time can be regulated

by the number of samples and the number of observations but the running time of MHT depends on

the complexity of the problem instance, which is not predictable in advance. In addition, the memory

required by MCMCDA is significantly less than the memory required by MHT, since MCMCDA is only

required to store one association event at a time.

4) Online MCMCDA: An example of tracking multiple targets in a densely cluttered environment is

used to demonstrate online MCMCDA from Section V-B. For this example, the surveillance duration

is T = 100 and the scenario is generated according to the model for multi-target tracking described in

Section II-A. The surveillance region is R = [0, 100]× [0, 100] and the model parameters are: λbV = 5,
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pz = 1/20, pd = 0.7, and λfV = 30. There are a total of 380 targets. The linear model (30) is used, but

with different covariance matrices: Q = diag(0.031, 0.031) and R = diag(0.031, 0.031). The size of the

sliding window is twin = 14 for the online MCMCDA algorithm while d̄ = 5 and v̄ = 3 unit lengths per

unit time.

For this example, MHT took 6,995 seconds while online MCMCDA took only 343 seconds, i.e., a

20-fold reduction in computation time. On the F1 measure, MHT scored 0.85 and MCMCDA scored

0.91. In addition, MHT found 494 targets but MCMCDA detected 335 targets which is close to the actual

number of 380 targets. The tracks estimated by MHT and MCMCDA are shown in Figure 10. For easy

comparison, Figure 10 also shows the actual trajectories of targets. In summary, this example shows that

MCMCDA is very effective in a dense environment and achieves superior performance with a fraction

of the computation time required by MHT.

5) Convergence: An example is used to demonstrate the convergence of MCMCDA (Theorem 4).

In order to compute the exact estimates, we have chosen a simple example where there are four scans

(T = 4) and three measurements per scan. Hence, there are a total of 12 measurements. But even for this

simple case, there are over 45,000 partitions or association events, i.e., the size of Ω is over 45,000. We

again used the dynamics and measurement model given in (30), where Q = diag(4, 4) and R = diag(4, 4).

The surveillance region is R = [0, 100] × [0, 100]. The other parameters are: pd = 0.7, λf = 0.0013,

λb = 9.38× 10−4, d̄ = 4, and v̄ = 100. All the measurements are shown in Figure 11(a) and they are

Y1 =
{[

7.81
44.58

]
,
[

9.46
51.03

]
,
[

7.92
56.38

]}
, Y2 =

{[
28.93
45.22

]
,
[

29.88
48.16

]
,
[

27.31
52.41

]}
,

Y3 =
{[

51.30
52.29

]
,
[

51.91
48.79

]
,
[

52.04
42.47

]}
, Y4 =

{[
70.58
52.10

]
,
[

75.70
45.07

]
,
[

66.71
41.21

]}
.

Let A be an event such that there are 3 targets at time t = T and Xk be the state of the kth target

at time t = T . Let B be an event such that B ⊂ A and ‖X1‖ < ‖X2‖ < ‖X3‖. Our objective is the

computation of E(Xk|B) for k = 1, 2, 3. Here, B provides a unique labeling with probability 1. Values

for E(Xk|B) are computed exactly by enumeration. Let X̂k(n) be the estimate of E(Xk|B) made at

the nth MCMC step of Algorithm 3 after the first 100 burn-in samples. We ran 100 independent runs

and computed the root mean-square error (RMSE) for each k and n. The average RMSE is shown as

a function of the number of samples in Figure 11(b). Although the size of the partition space Ω is

over 45,000, this is a simple case and, as one might expect. Figure 11(b) shows rapid convergence of

MCMCDA estimates toward the exact values.
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(a) Scenario (t = 10 to t = 40) (b) MHT (t = 10 to t = 40) (c) MCMCDA (t = 10 to t = 40)

(d) Scenario (t = 40 to t = 70) (e) MHT (t = 40 to t = 70) (f) MCMCDA (t = 40 to t = 70)

(g) Scenario (t = 70 to t = 100) (h) MHT (t = 70 to t = 100) (i) MCMCDA (t = 70 to t = 100)

Fig. 10. Actual trajectories of targets at different time intervals and tracks estimated by MHT and MCMCDA. The running

time of MCMCDA for this example was 343 seconds while it took 6,995 seconds for MHT to complete. MCMCDA scored

0.91 in the F1 measure and MHT scored 0.85. (a) Actual trajectories of targets from t = 10 to t = 40. (b) Tracks estimated

by MHT from t = 10 to t = 40. (c) Tracks estimated by MCMCDA from t = 10 to t = 40. (d) Actual trajectories of targets

from t = 40 to t = 70. (e) Tracks estimated by MHT from t = 40 to t = 70. (f) Tracks estimated by MCMCDA from t = 40

to t = 70. (g) Actual trajectories of targets from t = 70 to t = 100. (h) Tracks estimated by MHT from t = 70 to t = 100. (i)

Tracks estimated by MHT from t = 70 to t = 100.
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(a) (b)

Fig. 11. (a) All measurements from t = 1 to t = 4. (b) Average root mean-square error (RMSE) as a function of the number of

MCMC samples. The dotted line represents the average RMSE of X̂1 in estimating E(X1|B). The dashed line is for estimating

E(X2|B) and the solid line is for estimating E(X3|B).

VI. CONCLUSIONS

In this paper, we have presented Markov chain Monte Carlo data association (MCMCDA) for solving

data association problems arising in multi-target tracking in a cluttered environment. Instead of enumer-

ating the entire space of associations, MCMCDA randomly samples the region where the posterior is

concentrated.

For the case of a fixed number of targets, we have shown that a single-scan MCMCDA algorithm

provides a fully polynomial randomized approximation scheme for the JPDA calculation, which is known

to be NP-hard and is infeasible in practice for large problems. One can also consider a combined approach,

where JPDA is used for small subgraphs created after some of the edges in the bipartite measurement

validation graph have been broken by MCMC sampling. The precise division of labor will depend on

the specific application and available computing resources.

For the general multi-target tracking problem, in which unknown numbers of targets appear and

disappear at random times, we have presented a multi-scan MCMCDA algorithm that is capable of

initiating and terminating tracks. Our simulation results show the remarkable performance of the MCM-

CDA algorithm under extreme conditions such as a large number of targets in a dense environment, low

detection probabilities, and high false alarm rates. The MCMCDA algorithm is flexible and can easily

incorporate domain specific knowledge to make it more efficient. The efficiency of MCMCDA has been
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demonstrated as part of of the real-time control system developed for solving multi-agent pursuit-evasion

game using a large-scale outdoor wireless sensor network [5].

VII. APPENDIX

A. Proof of Theorem 2

To prove Theorem 2, we need the following lemmas. For notational convenience, we denote Ωt by Ω.

Lemma 1: Let C = pdL̄
λf(1−pd) and D = λf(1−pd)

Lpd
. For any ω0, ω1, ω2 ∈ Ω, if ω1 = ω0 − e0, for some

edge e0 ∈ ω0, and ω2 = ω1 − e1, for some edge e1 ∈ ω1, then:

π(ω0)/π(ω1) ≤ C

π(ω0)/π(ω2) ≤ C2
and

π(ω1)/π(ω0) ≤ D

π(ω2)/π(ω0) ≤ D2.

Proof: ω0 and ω1 are identical except that ω1 is missing the edge e0. So |ω0| = |ω1| + 1. If

e0 = (u, v) and k = |ω0|,

π(ω0)/π(ω1) =
λN−kf pkd(1− pd)K−k

λ
N−(k−1)
f pk−1

d (1− pd)K−(k−1)
P̂ v(u|y1:t−1)

=
pd

λf(1− pd)
P̂ v(u|y1:t−1) ≤ C.

On the other hand,

π(ω1)/π(ω0) =
λ
N−(k−1)
f pk−1

d (1− pd)K−(k−1)

λN−kf pkd(1− pd)K−k
1

P̂ v(u|y1:t−1)

=
λf(1− pd)

pd

1
P̂ v(u|y1:t−1)

≤ D.

Since π(ω0)/π(ω2) = π(ω0)/π(ω1) × π(ω1)/π(ω2), by repeating the above argument twice, we get

π(ω0)/π(ω2) ≤ C2. Similarly, we have π(ω2)/π(ω0) ≤ D2.

Lemma 2: Let R = max{1, C,D}, where C and D are defined in Lemma 1. Then the maximum edge

loading of the Markov chain M is bounded as ρ̄ ≤ 4R4K2N .

Proof: For each pair of matchings X,Y in G, we define the canonical path γXY as in [13]. Consider

the symmetric difference X ⊕Y , where X ⊕Y = (X −Y )∪ (Y −X). X ⊕Y is a disjoint collection of

paths in G including closed cycles, each of which has edges that belong to X and Y alternately. Suppose

that we have fixed some arbitrary ordering on all simple paths in G, and designate a “start vertex” to

each of the paths, which is arbitrary if the path is a closed cycle but must be an endpoint otherwise. This

gives a unique ordering P1, P2, . . . , Pm on the paths appearing in X ⊕ Y . The canonical path from X

to Y involves “unwinding” each of the Pi in turn as follows. We need to consider two cases:
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(i) Pi is not a cycle. Let Pi consist of the sequence (v0, v1, . . . , vl) of vertices with the start vertex

v0. If (v0, v1) ∈ Y , perform a sequence of switching moves replacing (v2j+1, v2j+2) by (v2j , v2j+1) for

j = 0, 1, . . ., and finish with an addition move if l is odd. If (v0, v1) ∈ X , remove (v0, v1) and proceed

as before for the reduced path (v1, . . . , vl).

(ii) Pi is a cycle. Let Pi consist of the sequence (v0, v1, . . . , v2l+1) of vertices, for l ≥ 1, where v0 is

the start vertex, and (v2j , v2j+1) ∈ X for j = 0, . . . , l, with remaining edges belonging to Y . We first

remove the edge (v0, v1). Now we are left with an open path O with endpoints v0, v1, with the start

vertex vk of O, for k ∈ {0, 1}. Then we unwind O as in (i) above but treating v1−k as the start vertex

to identify that it was a cycle.

Let t be an arbitrary edge in the Markov chain M, i.e., a transition from ω to ω′ 6= ω. Let cp(t) =

{(X,Y ) : γXY 3 t} be the set of canonical paths that use t. We define a function ηt : cp(t)→ Ω as in

[13],

ηt(X,Y ) =


X ⊕ Y ⊕ (ω ∪ ω′)− eXYt

,

if t is a switch move and the current path is a cycle;

X ⊕ Y ⊕ (ω ∪ ω′), otherwise,

where eXYt
is the edge in X adjacent to the start vertex that was removed first in (ii) above. ηt(X,Y ) is

always a matching in G and ηt is injective as shown in [13]. Notice that the bipartite graph G considered

here is a subset of the graphs considered in [13] so the arguments about ηt can be directly applied here.

Notice that

Q(t) = Q(ω, ω′) = π(ω)P (ω, ω′) =
1

2|E|
min{π(ω), π(ω′)}. (32)

Next, we bound π(X)π(Y ) and we need to consider four cases:

(i) t is a deletion move. We have ω′ = ω − e and ηt(X,Y ) = X ⊕ Y ⊕ (ω ∪ ω′). Since ω ∪ ηt(X,Y )

and X ∪ Y are identical when viewed as multisets,

π(X)π(Y ) = π(ω)π(ηt(X,Y )) =
2|E|Q(t)

min{π(ω), π(ω′)}
π(ω)π(ηt(X,Y ))

= 2|E|Q(t) max
{

1,
π(ω)
π(ω′)

}
π(ηt(X,Y )) ≤ 2R|E|Q(t)π(ηt(X,Y )),

where we used the identity (32) in the second equality and Lemma 1 for the last inequality.

(ii) t is an addition move. We have ω′ = ω+ e and ηt(X,Y ) = X⊕Y ⊕ (ω∪ω′). Since ω∪ ηt(X,Y )

and X ∪ Y are identical when viewed as multisets, using the arguments from (i),

π(X)π(Y ) ≤ 2R|E|Q(t)π(ηt(X,Y )).
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(iii) t is a switch move and the current path is a cycle. Suppose ω′ = ω + e − e′. Let ω1 = ω + e.

Then ω′ = ω1 − e′. Since π(ω)
π(ω′) = π(ω1)

π(ω′)
π(ω)
π(ω1) , by Lemma 1, π(ω)

π(ω′) ≤ CD ≤ R2. Since ηt(X,Y ) =

X ⊕ Y ⊕ (ω ∪ ω′) − eXYt
, the multisets ω ∪ ηt(X,Y ) differs from X ∪ Y only in that e and eXYt

are

missing from it. Hence, by Lemma 1,

π(X)π(Y ) ≤ C2π(ω)π(ηt(X,Y )) = 2C2|E|Q(t) max
{

1,
π(ω)
π(ω′)

}
π(ηt(X,Y ))

≤ 2R4|E|Q(t)π(ηt(X,Y )).

(iv) t is a switch move and the current path is not a cycle. This case is similar to (iii) but the multisets

ω ∪ ηt(X,Y ) differs from X ∪ Y only in that e is missing from it. Hence, by Lemma 1,

π(X)π(Y ) ≤ Cπ(ω)π(ηt(X,Y )) = 2C|E|Q(t) max
{

1,
π(ω)
π(ω′)

}
π(ηt(X,Y ))

≤ 2R3|E|Q(t)π(ηt(X,Y )).

In summary, we have, in all cases, π(X)π(Y ) ≤ 2R4|E|Q(t)π(ηt(X,Y )). Thus, for any transition t,

1
Q(t)

∑
γXY 3t

π(X)π(Y )|γXY | ≤ 2R4|E|
∑
γXY 3t

π(ηt(X,Y ))|γXY |

≤ 4R4K|E|
∑
γXY 3t

π(ηt(X,Y ))

≤ 4R4K|E| ≤ 4R4K2N

where the second inequality follows from the fact that the length of any canonical path is bounded by

2K, the third equality is due to the fact that ηt is injective and π is a probability distribution, and the

last inequality follows from |E| ≤ KN . Hence, ρ̄ ≤ 4R4K2N .

We now prove Theorem 2. M is a finite, reversible, ergodic Markov chain with loop probabilities

P (ω, ω) ≥ 1
2 for all states ω (see Section IV-C). Hence, by Theorem 1, we know

τω(ε) ≤ ρ̄(log π(ω)−1 + log ε−1). (33)

The upper bound for ρ̄ is computed from Lemma 2. Now we just need to find the upper bound for

π(ω)−1. The normalizing constant in (27) is

Z =
∑
ω∈Ω

λN−|ω|f p
|ω|
d (1− pd)K−|ω|

∏
(u,v)∈ω

P̂ v(u|y1:t−1)

 . (34)

Hence,

Z ≤
∑
ω∈Ω

mK
1 m3(K,N) = mK

1 m3(K,N)|Ω|

≤ mK
1 m3(K,N)

K∑
k=0

(
K

k

)
N !

(N − k)!
≤ mK

1 m3(K,N)(K + 1)!N !,
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where the second inequality is by (28). Although this bound on Z is not tight, it will serve our purpose.

For any ω ∈ Ω, π(ω) ≥ 1
Zm

K
2 m4(K,N) so

1
π(ω)

≤ Z

mK
2 m4(K,N)

≤
(
m1

m2

)K m3(K,N)
m4(K,N)

(K + 1)!N !.

Hence,

log
1

π(ω)
≤ log

((
m1

m2

)K m3(K,N)
m4(K,N)

(K + 1)!N !

)
= m0(K,N).

Putting all together, we have, for all initial state ω ∈ Ω, τω(ε) ≤ 4R4K2N(m0(K,N) + log ε−1).

B. Proof of Theorem 3

To prove Theorem 3, we apply the techniques developed to prove Lemma 3 in [41] to our problem.

Let βε2 = {(j, k) : βjk ≥ ε2}. For now, assume (j, k) ∈ βε2 , i.e., βjk ≥ ε2. Let Xjk(ω) = I((ŷk, yj) ∈ ω)

where I is an indicator function. Notice that Eπ(Xjk) = π(ωjk) = βjk, where ωjk = {ω ∈ Ω : (yj , k) ∈

ω}. Since ‖p− π‖tv ≤ ε and ε ≤ ε1ε2/8,

|p(ωjk)− π(ωjk)| ≤ ε ≤
ε1π(ωjk)

8
(35)

Let β̄jk = 1
s

∑s
i=1Xjk(ωi) be the sample mean of s samples from p. Then E(β̄jk) = p(ωjk) and

Var(β̄jk) = 1
sVarp(Xjk). By Chebyshev’s inequality,

P
(∣∣β̄jk − p(ωjk)∣∣ > ε1

3
p(ωjk)

)
≤ 9
ε21s

Varp(Xjk)
p(ωjk)2

. (36)

Now if |β̄jk − p(ωjk)| ≤ ε1
3 p(ωjk), from (35),

|β̄jk − π(ωjk)| ≤ |β̄jk − p(ωjk)|+ |p(ωjk)− π(ωjk)|

≤ ε1
3
p(ωjk) +

ε1
8
π(ωjk)

≤ ε1
3

(
1 +

ε1
8

)
π(ωjk) +

ε1
8
π(ωjk)

≤ ε1
2
π(ωjk) (37)

and β̄jk estimates π(ωjk) within ratio 1 + ε1.

Now let us bound the difference between Varπ(Xjk) and Varp(Xjk). Notice that Varp(Xjk) =∑
ω∈Ω p(ω)Xjk(ω)2 − (EpXjk)2 and Varπ(Xjk) =

∑
ω∈Ω π(ω)Xjk(ω)2 − (EπXjk)2.

|Varp(Xjk)− Varπ(Xjk)| =

∣∣∣∣∣∑
ω∈Ω

Xjk(ω)2 (p(ω)− π(ω)) + (EπXjk)2 − (EpXjk)2

∣∣∣∣∣
≤

∣∣∣∣∣∑
ω∈Ω

Xjk(ω)2 (p(ω)− π(ω))

∣∣∣∣∣+
∣∣(EπXjk)2 − (EpXjk)2

∣∣ . (38)
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Since Xjk(ω) ≤ 1, ∣∣∣∣∣∑
ω∈Ω

Xjk(ω)2 (p(ω)− π(ω))

∣∣∣∣∣ ≤
∣∣∣∣∣∑
ω∈Ω

p(ω)− π(ω)

∣∣∣∣∣ ≤ ε. (39)

On the other hand,∣∣(EπXjk)2 − (EpXjk)2
∣∣ = |(EπXjk + EpXjk) (EπXjk − EpXjk)|

≤ 2 |EπXjk − EpXjk|

≤ 2

∣∣∣∣∣∑
ω∈Ω

π(ω)− p(ω)

∣∣∣∣∣ ≤ 2ε. (40)

Using (39) and (40) in (38), we have

|Varp(Xjk)− Varπ(Xjk)| ≤ 3ε ≤
3ε1π(ωjk)

8
, (41)

where the last inequality is due to the condition ε ≤ ε1ε2/8 and π(ωjk) ≥ ε2.

Since ε1 < 1 and Varπ(Xjk) ≤ π(ωjk), we find the following bound using (35) end (41):

Varp(Xjk)
p(ωjk)2

≤
Varπ(Xjk) + 3

8π(ωjk)(
7
8π(ωjk)

)2 ≤ 2
π(ωjk)

. (42)

Hence, by choosing s = 72ε−2
1 ε−1

2 and using (36) and (42), P
(
|β̄jk − p(ωjk)| > ε1

3 p(ωjk)
)
≤ 1

4 , that

is, β̄jk estimates π(ωjk) within ratio 1 + ε1 with probability at least 3/4.

To make the analysis easier, we assume a sampling technique which is slightly different from Algo-

rithm 1. We consider repeating the above experiment by an odd number t times, independently. Let β̂jk

be the median of the resulting t values of β̄jk. From above, the probability that β̂jk fails to approximate

βjk within ratio 1 + ε1 is at most

t∑
i=(t+1)/2

(
t

i

)(
1
4

)i(3
4

)t−i
≤

(
1
4

)t/2(3
4

)t/2 t∑
i=(t+1)/2

(
t

i

)
≤

(
3
16

)t/2
2t =

(
3
4

)t/2
.

Now let t = 7dlog η−1e, then(
3
4

)t/2
≤
(

3
4

)3.5dlog η−1e
≤ η3.5 log(4/3) ≤ η.

Hence, with a total of st = 504ε−2
1 ε−1

2 dlog η−1e samples, β̂jk estimates π(ωjk) within ratio 1 + ε1 with

probability at least 1− η for βjk ≥ ε2.

Now consider βjk that are smaller than ε2. With probability at least 1−η, for (j, k) ∈ βε2 , (1−ε1)βjk ≤

β̂jk ≤ (1 + ε1)βjk. So if β̂jk ≥ (1 + ε1)ε2, we must have (j, k) ∈ βε2 . Hence, β̂jk ≤ (1 + ε1)ε2 or

|β̂jk − βjk| ≤ (1 + ε1)ε2 for βjk < ε2.
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C. Proof of Theorem 4

Lemma 3: Suppose that 0 < pz, pd < 1 and λb, λf > 0. If ζ(d) > 0, for all d ∈ {1, . . . , d̄}, then the

Markov chain M is irreducible.

Proof: The birth and death moves are sufficient to illustrate the irreducibility of the chain. Since

0 < pz, pd < 1 and λb, λf > 0, P (ω|Y ) > 0 for all ω ∈ Ω. Take an arbitrary partition ω ∈ Ω, say

ω = {τ0, τ1, . . . , τK}. Now consider the partition ω′ ∈ Ω, such that ω′ = {τ ′0}, i.e., ω′ assigns all

observations as false alarms. Since ω is arbitrary, the chain is irreducible if the chain can move from ω′

to ω and from ω to ω′.

For the move from ω′ to ω, consider K consecutive birth moves: ω0 = ω′, ω1 = {{τ ′0\τ1}, τ1}, . . . , ωK =

{{τ ′0 \ {∪Ki=1τi}}, τ1, . . . , τK} = ω. Since ω ∈ Ω, all tracks τk are legal, i.e., τk satisfies the constraints

described in Section II-B and, for i = 1, . . . , |τk|−1, τk(ti+1) ∈ L(τk(ti), ti, d) for 1 ≤ d = ti+1−ti ≤ d̄.

Thus, ωk ∈ Ω for all k. Because ζ(d) > 0 and all tracks τk are legal, the probability of proposing τk

at ωk−1 by the birth move is positive and q(ωk, ωk+1) > 0. For the move from ω to ω′, consider K

consecutive death moves: ωK = ω, ωK−1, . . . , ω0 = ω′. The probability of removing the track τk at ωk

by the death move is positive and q(ωk+1, ωk) > 0. Since P (ωk|Y ) > 0 for all k, the chain can move

from ω′ to ω and from ω to ω′. Hence, the chain is irreducible.

From Lemma 3, M is irreducible. M is aperiodic since there is always a positive probability of

staying at the current state in the track update move. Now the transitions described in Algorithm 3

satisfy the detailed balance condition since it uses the Metropolis-Hastings kernel (12). Hence, by the

ergodic theorem [34], the chain converges to its stationary distribution π(ω) almost surely and X̂ → EπX

as nmc →∞.
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