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Summary. The main contribution of this paper are improved algorithms for the
GRAPH-CLEAR problem, a novel NP-Complete graph theoretic problem we re-
cently introduced as a tool to model multi-robot surveillance tasks. The proposed al-
gorithms combine two previously developed solving techniques and produces strate-
gies that require less robots to be executed. We provide a theoretical framework
useful to identify the conditions for the existence of an optimal solution under spe-
cial circumstances, and a set of mathematical tools characterizing the problem being
studied. This is followed by the presentation of an algorithm that finds an optimal
solution under these special circumstance and a second algorithm that attempts to
generalize the previous one. Finally we also identify a set of open questions deserving
more investigations.

1 Introduction

The use of multi-robot systems for the surveillance of vast regions is one of the
well established areas in multi-robot research. Up to now, however, there have
been still very few on-field deployments of these systems for real world applica-
tions. Besides the obvious matter of cost, another reason for their moderate use
is the fact that many basic questions about the efficient coordination of these
systems are still unanswered. A big fraction of former theoretical research de-
veloped models where robots were equipped with sensors abstractions pretty
far from realistic applications, e.g. sensors with infinite range and the alike.
In this paper we instead extend our previous findings aimed to investigate
surveillance tasks by multi-robot systems where individual agents use sensors
with limited capabilities. We started this research thread with two papers
[5][6] aimed to extend the CMOMMT (Cooperative Multi-robot Observation
of Multiple Moving Targets) problem initially posed by Parker [10]. One of the
main limitations of these algorithms is the requirement that robots operate
in open areas. Our following efforts have therefore been devoted to scenarios
where robots operate in cluttered environments [7]. In particular, we modeled
the problem of discovering multiple intruders in a complex environment using
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a novel graph theoretic problem, dubbed GRAPH-CLEAR. Informally speak-
ing, the problem asks what is the minimum number of robots needed to detect
all possible intruders in a given complex environment that can be modeled as a
graph. In [8] we proved that the associated decision problem is NP-Complete.
As clarified later on, a way to circumvent the intractability of the problem on
graphs, is to perform certain guard operations that turn graphs into trees. In
[7] and [8] we have provided two algorithms that produce search strategies for
trees, i.e. course of actions for a robot team that ensures each intruder will
be discovered. Both algorithms are known to be suboptimal. In this paper we
present a new approach for the GRAPH-CLEAR problem restricted to trees
that outperforms the previous ones. It is worth to outline that many of the
properties regarding the GRAPH-CLEAR problem restricted to trees are still
to be investigated. For example, we do not know yet whether such restriction
to trees allows to find the optimal solution in polynomial time. This paper,
however, provides a further improvement that sheds some more light on this
problem, and provides some more formalism that could be used to answer this
question and similar ones.
The paper is organized as follows. In section 2 we revise former research re-
lated to multi-robot surveillance, and we provide references to seminal papers
on graph theory related to the problem at hand. Section 3 summarizes the
GRAPH-CLEAR problem and shortly addresses our formerly developed al-
gorithms. The new approach and a theoretical framework are presented in
section 4, followed by a new algorithm that computes strategies for the new
approach under certain conditions and an attempt to generalize the presented
algorithm to for general strategies. Section 5 concludes with a discussion of
remaining problems and possible extensions of the presented work.

2 Related Research

Visibility-based pursuit evasion games have attracted remarkable attention
from the robotics community. On the theoretical side Suzuki and Yamashita
first investigated the problem of a pursuer searching intruders using a beam
sensor with unlimited range [13]. LaValle and colleagues further investigated
this problem considering various restrictions and extensions. For example, the
case of an omnidirectional unlimited range sensor was investigated [4], or the
case of a robot equipped just with a gap sensor, i.e. a sensor capable only
of detecting discontinuities [12]. On the more applied side, the formerly cited
work on CMOMMT by Parker [10] set a milestone in the field. More recently
Gerkey at al. [3] describe an implementation of the visibility based pursuit
evasion problem on a robot with limited field of view.
Researchers in graph theory also investigated problems related to graph
search. Three papers are particularly important in order to put our con-
tribution into context. The concepts of contaminated and clear edges were
introduced by Parsons [11], who pioneered this research vein. The problem
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he defined, called edge-search, deals with graphs where edges can be contam-
inated and have to be cleared by agents placed on vertices or marching along
edges. The search number s(G) of the edge-search problem is the smallest
number of agents with which one can find a sequence of actions, called strat-
egy, such that all edges become clear. The problem of determining s(G) was
shown to be NP-Hard by Megiddo et al. in [9]. An important extension to
Parson’s work was proposed by Barriere et al. [1], who first considered the
edge-search problem with weighted vertices and edges. This extension implies
that more than one agent is needed to perform the basic operations of clearing
an edge or blocking a vertex. They also introduce the concept of contiguous
strategies, i.e. solving strategies such that the clear subset of vertices always
forms a connected subgraph of the original graph. They show that optimal
contiguous strategies can be found in linear time on trees (contiguous strate-
gies are however not optimal in general).

3 GRAPH CLEAR

This section offers a formalization of the GRAPH-CLEAR problem, pertinent
notation and current algorithms for computing strategies on trees which serve
as a basis for a new solving approach. Before moving to the formalism, we
outline the connection between real world problems and the mathematical
models presented herein. We are mainly interested in scenarios where robots
operate in complex indoor environments with many rooms connected by mul-
tiple doors. In this scenario, rooms are modeled as graph vertices, while doors
are mapped into graph edges connecting adjacent vertices (i.e. rooms). Figure
1 shows a simple environment and its corresponding graph model.
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Fig. 1. An indoor environment and its corresponding graph model for the GRAPH-
CLEAR problem.

As our focus is on robots with restricted capabilities, we assume that mul-
tiple robots are needed to patrol and search these environments. In particular,
we suppose that in order to guarantee that no intruder crosses a door, we need
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to place a certain number of robots to guard it. This number is indicated as
the weight of an edge. Similarly, more than one robot could be needed in or-
der to sweep a room and make sure it contains no intruder, or detect them.
This number is indicated as the weight of a vertex. While in the following we
strictly stick to graph theory jargon, the reader could translate every instance
of the word vertex with room, edge with door and agent with robot.

3.1 Definitions

GRAPH-CLEAR was formalized in [8] and is here shortly summarized. We
define a weighted graph1 as a triple G = (V,E,w), where V is the set of ver-
tices, E is the set of edges, and w : V ∪ E → N \ {0} is the weight function.
The graph is undirected. Edges and vertices can be clear or contaminated. A
clear vertex or edge hosts no intruders, while a contaminated vertex or edge
could potentially hide one or more intruders. G is said to be clear when all
vertices and edges are clear. A clear vertex v, however, can become contam-
inated again if there exists a path from v to another contaminated vertex or
edge2. Recontamination of edges is analogue. Contaminated vertices or edges
can be cleared by applying clearing and blocking operations respectively:

1. Clearing - an action applied to a vertex v ∈ V that ensures that all
intruders are detected, assuming no new intruders enter or leave the vertex
through an edge that is not blocked. When this operation is applied the
vertex becomes clear. The number of agents needed for clearing is w(v).

2. Blocking - an action applied to an edge e ∈ E that does not allow recon-
tamination of any edge or vertex through a path using the blocked edge.
A blocked edge becomes clear. The number of agents need for a block is
w(e).

When using multiple agents in order to clear a graph, we can deploy agents
in edges or vertices in order to perform the blocking and clearing actions
defined above. The policy we follow when deploying agents is called strategy
and defined as:

Definition 1 (Strategy). Let G = (V,E,w) be a weighted graph. A strategy
S for G is a function S : (V ∪ E)× N→ N.

S(x, t) is the number of agents deployed on x ∈ V ∪E at time t. Associated
with each strategy there is a cost, i.e. the number of agents needed in order
to implement the strategy.
1 while in graph related literature weighted graphs have weights for edges only, we

instead assume that weights are defined both for edges and vertices.
2 we also consider edges connecting two vertices in the path, contrary to the com-

mon definition of a path as a sequence of vertices. We opt not to formalize this
slight difference to keep the notation simpler.
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Definition 2 (Cost of a strategy). Let G = (V,E,w) be a weighted graph,
and let S be a strategy for G. The cost of S is

ag(S) = max
t∈N

∑
x∈V ∪E

S(x, t) (1)

A strategy S clears a graph G, if by deploying agents in the order dictated
by the strategy, there exist a time t such that all edges and vertices are clear.
While this notion could be made formal, we here omit the details. This leads
us to the GRAPH-CLEAR problem.

Definition 3 (GRAPH-CLEAR problem). Let G = (V,E,w) be a weighted
graph with all edges and vertices contaminated. Determine a strategy S for G
that clears G and is of minimal cost ag(S).

The following formula gives the cost to clear a vertex safely, i.e. the cost
to perform a clearing operation on the vertex while blocking all the edges
connected to it to avoid immediate recontamination.

s(v) := w(v) +
∑

e∈Edges(v)

w(e). (2)

The definition allow us to place agents on multiple vertices in one step. It
is worth noting that for any strategy which clears more than one vertex at
time t has ag(S) ≥ ag(S′) for some strategy ag(S′) which clears at most one
vertex at time t. Furthermore, for a graph G there may be multiple strategies
S of minimal cost, so we define the number of agents need to clear a graph G
as ag(G) := ag(S) for any optimal strategy S for G.

3.2 Previous results for GRAPH-CLEAR

The concepts of contiguous and non-contiguous strategies play an important
role in the algorithms we have formerly developed. As defined by Barriere
at al. [1], a contiguous strategy requires that the subset of cleared vertices
forms a connected subgraph. This requirement is relaxed for non-contiguous
strategies. In [7] the GRAPH-CLEAR problem was first attacked, and an al-
gorithm to produce non-contiguous strategies on trees was presented, as well
as a lower bound on the number of agents w.r.t to the depth of the tree.
The algorithm is based on the computation of labels on edges which we will
quickly present in this section. In [8] NP-completeness of GRAPH-CLEAR
was proven, and an algorithm to compute contiguous strategies on trees was
presented. It was shown that both algorithms produce sub-optimal strategies
for trees. The contiguous algorithm may, however, produce optimal contiguous
strategies, as mentioned in the discussion in [8]. In [1] contiguous strategies
on weighted graphs for the edge-search problem were first studied. Therein
it was shown that for edge-search a similar labeling method than used in
[8] actually produces optimal strategies. The problems GRAPH-CLEAR and
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edge-search are however different, so although similarities exist, it is not clear
if this result can be safely extended to the GRAPH-CLEAR problem. Since
contiguousness is a rather strict requirement that is not necessary in most
robotics applications we investigate non-contiguous strategies to yield a lower
number of agents needed. In [8] it was proposed to combine the two algo-
rithms, i.e. the one producing sub-optimal non-contiguous strategies and the
one producing contiguous strategies. An approach for finding non-contiguous
strategies based on the two former algorithms, its theoretical properties and
an improved algorithm are the primary contributions of this paper. In the
following we will shortly introduce the underlying mechanisms of the two pre-
vious algorithms. We restrict the problem to trees, and let GT = (V,E,w) be
an instance of the GRAPH-CLEAR problem with GT being a weighted tree.
An instance of GRAPH-CLEAR on a graph can be reduced to an instance
of GRAPH-CLEAR on a tree by permanently deploying a set of agents on
suitable edges, so that the graph stays connected but exhibits no cycles. Since
this cost is constant, it will not be mentioned anymore from now on, and it
will not play a role in the optimization process.

Non-contiguous labels

Let vx, vy ∈ V and e = [vx, vy] ∈ E. We are assigning a label λvx
(e) to edge

e to represent the number of agents needed to clear the subtree rooted in vy

when entering from vx. If vy is a leaf, then λvx
(e) = s(vy) = w(vy) + w(e).

Otherwise consider all neighbors of vy other than vx. Let these be v2, . . . , vm

with m = degree(vy). Write ei := [vy, vi] and let all vi be ordered s.t. ρi ≥ ρi+1

where ρi := λvy
(ei) − w(ei). The ordering defines the sequence in which we

clear the vertices vi. Now define the clearing cost of clearing the subtree rooted
at vi as:

c(vi) := λvy (ei) +
∑

2≤l<i

w(el), (3)

i.e. we have to use agents to block all edges to previously cleared subtrees
and then use agents to clear the subtree rooted in vi. The label on e hence
becomes:

λvx
(e) = max{s(vy), max

i=2,...,m
{c(vi)}}. (4)

The order defined by ρi minimizes this term. Once all labels are computed we
can find a strategy to clear the tree T from a vertex v ∈ V with neighbors
v1, . . . , vm by considering:

ag(v) = max
{
s(v), max

i=1,...,m
{cag(vi)}

}
, (5)

where cag(vi) = λv(ei)+
∑

1≤l<i w(ei) similar to c(vi), but including all neigh-
bors since we do not enter from another vertex when we start the clearing
from v directly. To find the minimal strategy we simply compute all labels
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and then select the vertex where ag(v) is minimal. The resulting strategies
are non-contiguous and not optimal. In fig. 2, upper parts, the execution of
a non-contiguous strategy based on the presented labels is illustrated. In [1]
Barriere provides details for computing labels for a similar labeling mechanism
in O(n) time, where n is the number of vertices in the tree.

Contiguous labels

The contiguous variant of these labels is the basis of the contiguous algorithm
from [8]. The key difference is that the contiguous strategy first clears vy and
then descends into the subtrees. It is motivated by the study of contiguous
edge-search strategies for weighted trees by Barriere in [1]. Since we first clear
vy all edges to vertices v2, . . . , vm have to remain blocked after safely clear-
ing vy. This means a reversal in the order in which we clear these vertices.
Furthermore, when entering the subtree rooted in vi we have the edge to vi

already blocked, contrary to the non-contiguous strategy. At first sight this
requires a modification of the costs and computation of labels as presented
in [8]. But for this paper let us consider a simplification. When entering vi

edge ei is blocked. But the next step is to clear vi itself before descending into
the other subtrees. Figure 2 illustrates the difference between the contigu-
ous and non-contiguous strategies. As we are using s(vi) agents for clearing
vi and also block e during this operation we can also take

∑
2≤l<i w(el) as

the additional number of agents to guard edges to contaminated neighbors
rather than

∑
2≤l≤i w(el) as done in [8]. Once vertex vi is cleared the block

on ei is removed and the term
∑

2≤l<i w(el) remains the maximum number
of agents used. Using this perspective it becomes apparent that contiguous
and non-contiguous labels actually have the same equations complementing
a lemma from [8] that the number of agent needed for a strategy based on
non-contiguous labels is equal or better than contiguous labels and showing
that the number of agents is indeed equal. In fig. 2 this becomes clearly visible
and we therefore refrain from presenting a formal proof.

4 Hybrid strategies

In [8] it was proposed to combine the two current algorithms by separating the
neighboring vertices into two sets and clearing one using the contiguous and
one with the non-contiguous algorithm. More precisely, for vy, coming from
vx, we seek to partition the neighbors V := {v2, . . . , vm} into two sets two sets
of vertices V1 and V2. The first set V1 will be cleared with the non-contiguous
algorithm. Once all elements of V1 are cleared the team clears vy and then
proceeds to clear V2 with the contiguous algorithm. We thereby divide the
weight of the term

∑
2≤l<i w(el) from equation 3 onto two sets. This can

greatly reduce the total number of agents needed. Figure 3 illustrates how
such a hybrid strategy would be executed.
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Fig. 2. An illustration of the execution of a strategy produced by the non-contiguous
and the contiguous algorithms. In step one for the non-contiguous strategy the team
descends into the subtree at vy and then proceeds by clearing v2 in step 2 using s(v2)
agents. Once cleared the edge to v2 has to remain blocked. This procedure repeat
in steps 3 and 4 for v3 and v4. Once all subtrees are cleared the team clears vy with
s(vy) and then releases the blocks on e2, e3 and e4 and adding a block to e. The
maximum number of agents located at any time within the subtree at vy becomes
the label λvy for e. For the contiguous strategy the team first clears vy and blocks
the edge to all subtrees. It then clears the subtrees in reverse order than for the
non-contiguous version, removing the blocks for each edge as the subtree becomes
cleared.

From fig. 3 one complication becomes apparent. Let V x
1 and V x

2 be the
partitioning of the neighbors of vx when coming from yet another vertex vz.
If vy ∈ V x

1 , then e is not blocked when the team enters vy, as seen in fig.
3. Once we clear vy we have to add a block on e which increases the total
number of agents needed while clearing V2, as seen in steps 3 to 5 in fig. 3. If
vy ∈ V x

2 , then the situation is reversed and we have to add a block on w(e)
only while we clear V1 and not while clearing V2.

Let us denote the case when v ∈ V x
1 as case 1 and v ∈ V x

2 as case 2. We
can compute a label for both cases, using the superscripts 1 and 2. So the
labels on edge e become:
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Fig. 3. Execution of the hybrid strategy. At step 1 the robot team enters the subtree
rooted at vy and proceeds by clearing V1 = {v2}. In step 2 v2 is cleared and the
edge to [vy, v2] is blocked and the team proceeds to clear vy. Then in step 3 and 4
it clears V2 = {v3, v4}. Once done the team returns to vx and continues clearing the
neighbors of vy.

h1
u(V1, V2) = max

{
max
vi∈V1

{c1(vi)}, max
vi∈V2

{c2(vi) + w(e)}
}

h2
u(V1, V2) = max

{
max
vi∈V1

{c1(vi) + w(e)}, max
vi∈V2

{c2(vi)}
}

λ1
vx

(e) = max
{
s(vy), min

V1,V2
{h1

u(V1, V2)}
}

(6)

λ2
vx

(e) = max
{
s(vy), min

V1,V2
{h2

u(V1, V2)}
}

(7)

where c(vi)j = λj
vy

(ei) +
∑

vl∈Vj ,2≤l<i w(el) for j = 1, 2. It is easy to see,
however, that h1

u(V1, V2) = h2
u(V2, V1) given that λ1

vy
(ei) = λ2

vy
(ei), which

is the case since we compute the labels from the leaves upward and these
equations are identical. It is however, important to note that the partition
still has take into account the penalty term w(e), i.e. only to which side it is
assigned is not relevant. Hence, to simplify notation, we will drop superscripts
1 and 2. The problem now states as follows:

Definition 4 (Hybrid algorithm: optimal partition). Given vx, vy and
neighbors V = {v2, . . . , vm} as before find a partition of V into V1 and V2 s.t.
hu(V1, V2) is minimal.

The proposed algorithm to find certain types of partitions satisfying that
hu(V1, V2) is minimal will be based on theoretical framework of the next two
subsections. First we introduce the concept of batches which cluster vertices
in section 4.1 and then proceed by developing criteria for optimal partitions
into V1 and V2 in section 4.2. On the basis of this we will develop the actual
algorithm in section 4.3.
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4.1 Batches

The following definition will be useful to describe occurrences of the maximum
number of agents within a set of vertices V when clearing it with either the
contiguous or non-contiguous algorithm.

We shall call a set of all vertices with ρi = a − p a batch Bp, where a :=
max{λvy

(ei)}. The set V can have at most a−1 batches, i.e. B1, B2, . . . , Ba−1.
During the execution of a strategy S in the non-contiguous variant we clear
the batches in sequence B1, B2, . . . , Ba−1 and then clear v. For the contigu-
ous variant the order of clearing is reversed. Define the weight of a batch as
w(Bp) :=

∑
vi∈Bp

w(ei) and write w(Bp<k) :=
∑

p<k w(Bp). Define the max-
imum cost within V to be h := max2≤i≤m{c(vi)} and let vq be a vertex that
assumes this maximum, i.e. h = c(vq), s.t. vq ∈ Bk with k being the largest
such possible batch index. Using this notation we can rewrite the maximum
cost to be:

h = w(Bi<k) + w(Bk)− w(eq) + λ(eq)
= w(Bi≤k) + ρq = w(Bi≤k) + a− k. (8)

Furthermore, we can define the maximum cost within a batch:

hj :=
{
w(Bi≤j) + a− j ifBj 6= ∅
0 otherwise

(9)

Clearly h = max1≤j≤a−1{hj}.
There are some simple results with regard to the weight of batches and

their distance to the current Bk within V .

Lemma 1. Let vq and Bk be as before. Consider any non-empty batch Bk′

s.t. k > k′. Then
k − k′ ≤ w(Bk′<i≤k). (10)

Proof: Given h as above, consider the last vertex vr of another batch Bk′ ,
i.e. vr = ve

k′ and define h′ := c(vr) = w(Bi≤k′) + ρr. Recall that ρq = a − k
and ρr = a− k′. By assumption h′ ≤ h. This implies

w(Bi≤k′) + ρr ≤ w(Bi≤k) + ρq

w(Bi≤k′) + ρr − ρq ≤ w(Bi≤k)
k − k′ ≤ w(Bi≤k)− w(Bi≤k′)
k − k′ ≤ w(Bk′<i≤k) (11)

which concludes the proof.� An analogue result exists for k < k′.

Lemma 2. Let vq and Bk be as before. Consider any non-empty batch Bk′

s.t. k < k′. Then
w(Bk<i≤k′) ≤ k′ − k. (12)
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Proof: Analogue to proof of lemma 1.�
We can list all classes of vertices in a batch Bp as:

ρi a− p a− p . . . a− p
λ(ei) a− p+ 1 a− p+ 2 . . . a
w(ei) 1 2 . . . p

Using this we can write down all batches and their possible edge classes as:

Batch B1 B2 . . . Ba−1

ρi a− 1 a− 2 a− 2 . . . 1 1 . . . 1
λ(ei) a a− 1 a . . . 2 3 . . . a
w(ei) 1 1 2 . . . 1 2 . . . a− 1

Table 1 shows a set of vertices V = {v2, v3, . . . , v10} with a = 10 and
vq = v9 with maximum cost c(vq) = 18.

Bp B2 B3 B5 B6 B7 B9

vi v2 v3 v4 v5 v6 v7 v8 v9 v10
ρi 8 7 7 7 5 4 3 3 1
λ(ei) 10 8 8 10 7 7 5 5 2
w(ei) 2 1 1 3 2 3 2 2 1
c(vi) 10 10 11 14 14 15 16 18 17

Table 1. A simple example of a set of vertices and their assignment into batches.

4.2 Criteria for optimal partitions

This section discusses criteria for optimal partitions. As seen from the example
set from Table 1 there are vertices in batches Bi, i > k that do not contribute
to the maximum such as vertex v10 ∈ B9 in the example. We shall call all
such vertices the tail T =

⋃
i>k Bi of V . Their joint weight shall be denoted

by w(T ) =
∑

vi∈T w(ei). As a consequence of lemma 1 we have w(Tt) < a−k.
When partitioning V into V1 and V2 we shall write Bi,1 and Bi,2 for the

batches of V1 and V2 respectively. Furthermore, we write k1 and k2 for previ-
ously k, vq,1 and vq,2 for previously vq and hV1 and hV2 for previously h. Also
the tails become T1 and T2. For notational simplicity we will also ignore the
penalty term formerly discussed as this does not change the basic results. It
will be introduced again when presenting the partitioning algorithm. Finally,
for a partition V1 and V2 define its maximization criteria as:

c(V1, V2) := k1 + k2 + w(T1) + w(T2)− |h1 − h2|. (13)

Definition 5 (Balanced and full partitions). Let V be a set of vertices
as before. A partitioning of V into V1 and V2 is called



12 Andreas Kolling and Stefano Carpin

• full if k = k1 = k2,
• balanced if w(Bi≤k1,1)− k1 = w(Bi≤k2,2)− k2,
• maximal if for any other partition V ′1 , V

′
2 we get that c(V1, V2) ≥ c(V ′1 , V ′2).

It is easy to see that a partition that is full and balanced will minimize hu

and is therefore optimal. Also any full and balanced partition will be maximal.
To show that any maximal partition is optimal we need the following lemma
to show that hb := w(Bi≤k)/2 + a− k is a lower bound on hu.

Lemma 3. Given V , with a and k as before and any partition V1 and V2 we
have that:

hu ≥ w(Bi≤k)/2 + a− k = hb. (14)

Proof: W.l.o.g. assume that hV1 ≥ hV2 , i.e. w(Bi≤k1,1)+a−k1 ≥ w(Bi≤k2,2)+
a−k2. So hu = hV1 . Since by assumption V has no tail we have that w(T1) ≤
k−k1 and w(T2) ≤ k−k2. Assume that hV1 < w(Bi≤k)/2 +a−k which leads
to:

2 · hV1 < w(Bi≤k1,1) + w(Bi≤k2,2) (15)
w(T1) + w(T2) + 2a− 2k

2 · hV1 < w(Bi≤k1,1) + w(Bi≤k2,2) (16)
a− k1 + a− k2

hV1 < hV2 (17)

Which is a contradiction to hV1 ≥ hV2 and concludes the proof.�
For full and balanced partitions we get that hu = hb. But a full and

balanced partition may not exist and hence we have to consider maximal
partitions.

Lemma 4. If V1, V2 is a maximal partition of V , then hu is minimal.

Proof: W.l.o.g. assume that k2 ≤ k1. As before we have w(Bi≤k) =
w(Bi≤k1,1) + w(T1) + w(Bi≤k2,2) + w(T2) and |h1 − h2| = |(w(Bi≤k1,1) +
k1)− (w(Bi≤k2,2) + k2)|. This leads to the following cases:

Case 1: assume hu = h1 > h2 and we get

h2 − h1 + k2 − k1 = w(Bi≤k2,2)− w(Bi≤k1,1). (18)

Now:

hb − hu = w(Bi≤k)/2− w(Bi≤k1,1) + k1 − k

=
1
2

(h2 − h1 + k2 + k1 + w(T2) + w(T1))− k (19)

By the maximal property we get that hb − h1 is maximal and the partition is
therefore optimal. Case 2: assume hu = h2 > h1 and analogue to the previous
case this results in:
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hb − h2 =
1
2

(h1 − h2 + k2 + k1 + w(T2) + w(T2))− k (20)

which is again maximal by the maximal property of the partition. Hence a
maximal partition is optimal.�

In colloquial terms, we have to find a partition with the largest k1, k2 and
large tails T1, T2 and with w(Bi≤k1,1) roughly equal to w(Bi≤k2,2).

4.3 The partitioning algorithm

The results of the previous section give us a good starting point for the
algorithms in this section. They are based on a dynamic programming ap-
proach motivated by the relation to the subset sum problem, one of the early
NP-complete problems [2]. In short, the subset sum problem is to determine
whether a set of integer values contains a subset whose values sum up to some
given integer z. A dynamic programming algorithm to solve it runs in pseudo-
polynomial time O(Cn) where C is the sum of all members of the set and n is
the number of elements. Translated to our case this becomes the problem to
determine whether V contains a set of vertices V2 s.t. the sum of the weight
of their respective edges w(V2) sums up to z = dw(V )/2−w(e)/2e. Here w(e)
is the penalty term from equation 6. A solution V2 would minimize hu given
that V1 = V \ V2, V2 is a full partition, i.e. it satisfies k1 = k2 = k. Obviously,
using the dynamic programming approach for solving the subset sum problem
gives no guarantee that k1 = k2 = k. In fact, such a partition may not even
exist. The following will be concerned with an algorithm that guarantees to
find a full and balanced partition if one exists.

Now, let A be a table with m−1 rows and z = dw(V )/2−w(e)/2e columns.
Set A(0, j) := 0,∀j and A(i, 0) := 0,∀i. Each row represents a vertex and they
shall be ordered as vm, vm−1, . . . , v2, i.e. vm corresponds to row one, vm−1 to
row two and so on. Write ci for w(em−i+1), i.e. the cost added to V2 by
adding the vertex in row i. If ci > j, then A(i, j) = A(i − 1, j), otherwise
A(i, j) = max{A(i− 1, j), A(i− 1, j − ci) + ci)}. An entry A(i, j) in the table
is then the maximal weight for V2 achievable using vertices vm, . . . , vm−i+1.
In table 4 these values are computed for our simple example from table 1. As
mentioned before we can assume that V has no tail and hence ignore the tail
{v10} of the example and therefore have only 8 vertices. For the example table
4 we assume that w(e) = 2, which means we seek to create V2 with w(V2) = 7.

If an entry in A exists s.t. A(i, j) = dw(V )/2 − w(e)/2e, then we have a
partition that is optimal w.r.t. to the distribution of the edge weights onto V1

and V2. The weight of V1 and V2 is, however, only one part in the optimization.
In table 4 each entry with A(i, j) = 7 represents possibly multiple partitions,
some of which do not satisfy that k1 = k2 = k = 7. In figure 5 three possible
partitions, represented as paths through the table, with w(V2) = 7 are shown
with V2 = {v9, v7, v4, v3} being the only optimal one. The other two lead to
k1 = 5 or k1 = 3 and are therefore not optimal. Finding an optimal partition
is hence the problem of finding an entry with A(i, j) = dw(V )/2−w(e)/2e for
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Fig. 4. The dynamic programming table for the example from table 1 to solve the
subset sum problem.

which we have a path that represents a maximal partition. We will illustrate
how to compute whether such a path exists for the case of full and balanced
partitions. To do so we need to find an efficient way to keep track of the
possible k1, k2 that one can have when at A(i, j).

Fig. 5. Possible partitions resulting from the dynamic programming table. A parti-
tion is represented by a sequence of arrows where a diagonal arrow means that the
vertex of the row to which the arrow is pointing is in V2 while a horizontal arrow
indicates that the vertex is in V1. A valid partition consists only of arrows with dark
tips while invalid partitions have at least one arrow with a hollow tip.

Since we ordered the vertices in reverse order we can view the problem
from the perspective of adding vertex by vertex with decreasing index to V2

as we proceed through the rows of A. For V1 we can view it as if we are
removing vertices with decreasing index from V1. The main question is what
happens to k1 for V1 and k2 for V2 as we remove and add vertices.

Now when we add a vertex v ∈ Bu,1 from V1 to V2 we know that all
other vertices in V2 are in batches Bj≥u,2. Write V ′1 = V1 \ {v} and V ′2 =
V2 ∪ {v}. Define S(V2) :=

∑
1≤i≤k2

w(Bi, 2) to be the support of V2. Now if
k2 − u > S(V2), then v = v′q will be the new maximum for V ′2 . Otherwise, if
k2−u ≤ S(V2), then vq = v′q. To illustrate this with our example set of vertices
simply choose V2 = {v9}. Clearly vq,2 = v9 and S(V2) = 2 and adding v5 will
lead to v′q,2 = v5. Similarly for V ′1 , when removing v with associated edge ev,
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the support will be reduced to S(V ′1) = S(V1) − w(ev). Now the maximum
v′q,1 may shift to a vertex of a lower batch if ∃Bb 6= ∅ s.t. k1 − b > S(V1),
otherwise it will remain at its former vertex s.t. v′q,1 = vq,1.

As long as k1 = k2 = k we know that S(V1) = w(V1), S(V2) =
w(V2), w(T1) = w(T2) = 0 and we do not need to keep track of these values as
they evolve. Once we add a vertex v ∈ Bu,1 from V1 to V2 with k2−u > S(V2)
we will have k′2 < k and the path will not be a valid solution since k2 can
only grow upon addition of the first vertex. Let us define two further tables
K1(i, j) and K2(i, j) for the dynamic programming approach in which we will
keep track of k1 and k2. For our case the computation of K1(i, j) and K2(i, j)
involves only a simple check, whether upon addition or removal of the vertex
the current K1 and K2 can be maintained. If this is not the case we discard
the solution path by setting K1(i, j) = 0 or K2(i, j) = 0. The pseudo code in 1
shows how to compute A,K1 and K2. Initially we set K1(0, j) = K2(0, j) = k.
It is obvious that k1, k2 are monotonically decreasing w.r.t. to growing i, j,
except for the special case for V1 if we remove the first vertex v2 in the last
row of the table and at this point have vq,1 = v2 and Bb1,1 = {v2}, i.e. there
is no other vertex in its batch and it was the maximum in V2 before removal.
Dealing with this special case merely complicates notation without changing
the methodology and we will therefore ignore it for now.

Now, an entry A(i, j) = z with K1(i, j) = K2(i, j) = k has a path that
represents a full and balanced partition which is therefore optimal. If no such
entry exists, then neither does a full and balanced partition. The algorithm for
this case of full and balanced partitions illustrates how to use the theoretical
results of this paper to obtain an improved algorithm for the GRAPH-CLEAR
problem on trees.

Trying to obtain an algorithm for the general case entails more complica-
tions. In essence, a compromise between obtaining balanced edge weight and
large k1, k2 has to be sought. More precisely, we have to consider all parts of
the maximization criteria c(V1, V2) to identify optimal partitions. Extending
the previous dynamic programming approach with brute force would mean
to evaluate all possible paths in the table leading to any entry A(i, j) and
choosing one for which the maximization criteria is largest. Obviously, this
is not efficient. To see how we could arrive at a more efficient method let us
define C(i, j) to be the largest value of c(V1, V2) across all partitions that lead
to a path to A(i, j). More precisely, C(i, j) is the largest c(V1, V2) for all par-
titions V1, V2 s.t. V2 ⊂ {vm, . . . , vm−i+1} with w(V2) = A(i, j). Computing C
involves keeping track not only of k1 and k2 in tables K1, K2, but also of the
tails T1 and T2 for whose weight we also need tables T1(i, j) and T2(i, j) and
requires therefore some more bookkeeping. Using equation 13 for c(V1, V2) we
get that:
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Algorithm 1 Compute table entries at(i, j)
if ci > j then
A(i, j)← A(i− 1, j)
K1(i, j)← K1(i− 1, j)
K2(i, j)← K2(i− 1, j)

else
A(i, j) = max{A(i− 1, j), A(i− 1, j − ci) + ci)}
if A(i, j) = A(i− 1, j − ci) + ci then

if ρ2 < K1(i− 1, j − ci)− (w(V )−A(i, j)) then
K1(i, j)← 0

else
K1(i, j)← K1(i− 1, j − ci)

end if
if a− ρm−i < K2(i− 1, j − ci)−A(i− 1, j − ci) then
K2(i, j)← 0

else
K2(i, j)← K2(i− 1, j − ci)

end if
end if
if A(i, j) = A(i− 1, j) then

if K2(i− 1, j) ≥ K2(i, j) and K1(i− 1, j) ≥ K1(i, j) then
K1(i, j)← K1(i− 1, j)
K2(i, j)← K2(i− 1, j)

end if
end if

end if

C(i, j) = K1(i, j) +K2(i, j) + T1(i, j) + T2(i, j) (21)
− |H1(i, j)−H2(i, j)− w(e)| (22)

H1(i, j) = w(V )−A(i, j)− T1(i, j)−K1(i, j), (23)
H2(i, j) = A(i, j)− T2(i, j)−K2(i, j). (24)

where K1,K2, T2, T1 now describe a partition that minimizes C(i, j). Since
the support of a set V1 is s.t. w(V1) = S(V1) +w(T1) we also know about the
size of the support of V1 and analogue for V2.

The key problem for finding maximal partitions efficiently is to find a
way to compute C(i, j) from the entries for A,K1,K2, T1, T2 at (i− 1, j) and
(i−1, j−ci). We do already know how K1, K2, T1 and T2 evolve when adding
a vertex vm−i+1. Hence we can identify whether the path from (i − 1, j) or
from (i − 1, j − ci) leads to a better partition w.r.t to C(i, j). One problem,
however, is that it not known whether it is possible that a partition at (i−1, j)
or (i− 1, j− ci) leads to an optimal partition at (i, j) while not being optimal
for C(i− 1, j) or C(i− 1, j − ci) respectively.

To see this more clearly consider a partition for A(i, j) that maximizes
C(i, j). Now the vertex for row i, i.e. vm−i+1, is either in V2 or V1. Now if
vm−i+1 ∈ V2 for this partition, then the partition V ′2 = V2 \ {vm−i+1}, V ′1 =
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V \V ′2 is a partition that leads to a path to A(i−1, j−ci). There is no proof yet
that this partition V ′2 , V

′
1 maximizes C(i−1, j−ci). If this is not the case, then

a path leading to a maximal partition for (i, j) passing through (i−1, j−ci) can
be different from the optimal path to entry (i− 1, j − ci). This has dramatic
consequences, as we cannot build our solution path row by row but would
have to reconsider all possible paths to an entry. Let us illustrate this with
an example in table 2 and 6. Table 7 shows some partitions represented by
paths that lead to entry A(5, 4). These three partitions from [?] V ′2 = {v3, v6},
V ′′2 = {v3, v4, v5} and V ′′′3 = {v3, v4, v7}. If we assume that the penalty term
w(e) = 1, then the minimum hu for these partitions is

hu(V \ V ′2 , V ′2) = max
{

max
vi∈V \V ′

2

{c(vi)}, max
vi∈V ′

2

{c(vi) + w(e)}
}

= 7 (25)

for V ′2 , while V ′′2 and V ′′′2 have hu(V \ V ′′2 , V ′′2 ) = hu(V \ V ′′′2 , V ′′′2 ) = 8. Ev-
idently V ′2 is also a maximal partition and hence a solution for the example.
The key problem, however, is to distinguish the partition V ′2 already at entry
A(4, 3) as the number of possible partitions grows exponentially and we seek
a way to compute C(i, j) efficiently. At entry A(4, 3) we have already three
possible partitions, i.e. V ′2 \ v3, V ′′2 \ v3 and V ′′′2 \ v3. At this point we should
already be able to make a choice which partition can lead to maximal parti-
tions at later entries such as A(5, 4). Currently, we only have the maximization
criteria C(i, j) to evaluate partitions which does not necessarily lead to fu-
ture optimal partitions as we add vertices. For the case in the example, using
the maximization criteria also leads to V ′2 \ v3 being the optimal partition for
A(4, 3), but this need not be the case in general.

V v2 v3 v4 v5 v6 v7
ρi 6 5 4 3 2 1
λ(ei) 7 6 6 4 5 2
w(ei) 1 1 2 1 3 1
c(vi) 7 7 8 8 10 10

Table 2. Another example of vertices.

Assuming we solve the previously mentioned issue, i.e. we can compute the
best partition based on the previous partitions efficiently, the results on how
k1, k2 change upon addition or removal of vertices can be used for an attempt
to find general solutions. For a set of vertices V1 we have that w(V1) = w(T1)+
S(V1) and hence we can chose to either keep track of the support S1(i, j) or
the tail T1(i, j) as each can be computed from A(i, j) and the other. For the
following we choose to compute S1(i, j) explicitly. The entries for table C(i, j)
are also implicitly known through A(i, j), w(V ), S1(i, j), S2(i, j),K1(i, j) and
K2(i, j).

It is clearly visible in the pseudo-code from 2 at which point we assume
that we have a criteria for the evaluation of partitions at (i − 1, j) and (i, j)
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Fig. 6. The dynamic programming table for the example from table 2.

Fig. 7. Possible partitions resulting from the dynamic programming table for the
example from 2. A partition is represented by a sequence of arrows where a diagonal
arrow means that the vertex of the row to which the arrow is pointing is in V2 while
a horizontal arrow indicates that the vertex is in V1.

which allows us to compute future partitions maximizing C(i, j). One could
use the current value of the maximization C(i, j) as a heuristic. It is not clear
whether C(i, j) actually satisfies the aforementioned assumptions, so it is not
guaranteed that a maximal partition is found. Another minor detail in the
algorithm is that the assignment of the vertex in the last row v2 may lead toK2

increasing and needs to be dealt with separately in practical implementations.
One way around this, however, is to adopt a different perspective on the
problem than before. It was useful to consider vertices to be added to V2 and
removed from V1 when searching for full and balanced partitions, but for the
general case another variant seems more elegant. Instead of V we consider
a subset of vertices V i = {vm, . . . , vm−i+1} to be partitioned into V i

1 , V
i
2 at

entry A(i, j). The pseudo-code from 3 shows how the formulas change when
we take this approach that consider V i := {vm, . . . , vi} to be partitioned into
V i

1 , V
i
2 at entry A(i, j). This means when going to A(i + 1, j) we either add

vi to V i
1 or to V i

2 which leads to similar formulas for both of these sets and
resolves the details for assigning v2. A solution to the problem can now be
found only in the last row m− 1 of the dynamic programming table, namely
in column j with C(m− 1, j) maximal.
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Algorithm 2 Compute table entries at(i, j)
if ci > j then

[K1(i, j), S1(i, j)]← [K1(i− 1, j), S1(i− 1, j)]
[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

else
if A(i− 1, j − ci) + ci = A(i, j) then

if a− ρ2 < K1(i− 1, j − ci)− S(i− 1, j − ci) + ci then
K1(i, j)← max{kqi |kqi < K1(i− 1, j − ci)− S(i− 1, j − ci)}
S1(i, j)← w(Bi≤K1(i,j))

else
K1(i, j)← K1(i− 1, j − ci)
S1(i, j)← S1(i− 1, j − ci)− ci

end if
if a− ρi < K2(i− 1, j − ci)− S(i− 1, j − ci) then
K2(i, j)← a− ρi

S2(i, j)← ci
else
K2(i, j)← K2(i− 1, j − ci)
S2(i, j)← S2(i− 1, j − ci) + ci

end if
if A(i− 1, j) = A(i, j) and partition at (i− 1, j) better than at (i, j) then

[K1(i, j), S1(i, j)]← [K1(i− 1, j), S1(i− 1, j)]
[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

end if
else

[K1(i, j), S1(i, j)]← [K1(i− 1, j), S1(i− 1, j)]
[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

end if
end if
return K2(i, j)

5 Discussion and Conclusion

We presented a new approach for finding strategies for GRAPH-CLEAR in a
tree. The new approach requires solving a partitioning problem for which we
developed a formalism that leads to criteria for optimal partitions. Based on
these results we presented an algorithm that computes partitions given that
a full and balanced partition exist. We also presented an approach that can
compute maximal partitions, but whose complexity depends on whether one
can find a method to evaluate partitions at an entry (i, j) for their potential
to maximize later entries in the dynamic programming table. Even without
resolving this problem the algorithm returns better strategies on trees than
the two previous algorithms from [8] and [7] since it degenerates to either one
of the two. Given that a full and balanced partition exists we can reliably
compute such a partition. It remains to test how well the general algorithm
performs with heuristics, despite the fact that it will not necessarily find a
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Algorithm 3 Compute table entries at(i, j)
if ci > j then

[K1(i, j), S1(i, j)]← [K1(i− 1, j), S1(i− 1, j)]
[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

else
if A(i− 1, j − ci) + ci = A(i, j) then

if a− ρi < K2(i− 1, j − ci)− S(i− 1, j − ci) then
K2(i, j)← a− ρi

S2(i, j)← ci
else
K2(i, j)← K2(i− 1, j − ci)
S2(i, j)← S2(i− 1, j − ci) + ci

end if
[K1(i, j), S1(i, j)]← [K1(i− 1, j − ci), S1(i− 1, j − ci)]
if A(i− 1, j) = A(i, j) then

Compare partitions when coming from A(i− 1, j) with A(i− 1, j − ci)
if A(i− 1, j) leads to a better partition then

if a− ρi < K1(i− 1, j)− S(i− 1, j) then
K1(i, j)← a− ρi

S1(i, j)← ci
else
K1(i, j)← K1(i− 1, j)
S1(i, j)← S1(i− 1, j) + ci

end if
[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

end if
end if

else
if a− ρi < K1(i− 1, j)− S(i− 1, j) then
K1(i, j)← a− ρi

S1(i, j)← ci
else
K1(i, j)← K1(i− 1, j − ci)
S1(i, j)← S1(i− 1, j − ci) + ci

end if
[K2(i, j), S2(i, j)]← [K2(i− 1, j), S2(i− 1, j)]

end if
end if
return K2(i, j)
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maximal partition when using a heuristic to choose partitions to avoid keeping
track of an exponentially growing number of possible partitions. The maxi-
mization criteria may aid in this, since we are seeking final partitions which
maximizes this criteria. For the first envisioned robotic applications it is es-
timated to have a constant bound on the number of edges per vertex, even
as the number of vertices grows large. This is usually the case for two di-
mensional planar environments. In such scenarios the current results could
already suffice for a practical implementation. Therefore, implementing and
using GRAPH-CLEAR for solving target detection problems remains the main
focus of further work, alongside with a continued effort to find an algorithm
that computes general optimal strategies on trees.
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