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In the past decade, the day-to-day life of every human has been invaded by a plethora of sensors, of
all shapes, sizes and purpose. Sensors have developed greater capabilities, with every new genera-
tion showcasing better computational and communication paradigms. Surveillance and monitoring
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Abstract

In this paper we present SCOPES, a distributed Smart Camera Object Position Estimation
sensor network System that provides maps of distribution of people in indoors environments.
Each node in the system is comprised of a cyclops camera that performs local detection and
processing of the visual information and a tmote sensor node, which provides multihop com-
munication. SCOPES uses local adaptive techniques that enables intelligent duty-cycling !
between the active sensing and the information processing tasks performed at each node. The
system switches between the fast and simple background subtraction algorithms for object de-
tection, to the more computationally intensive object grouping algorithms for estimating the
number and direction of travel of multiple persons in the local field of view. By aggregating
meta-information generated by each node, SCOPES is able to minimize the total data trans-
mitted in the network and still be able to generate an accurate density estimation map of the
coverage area.

Using analysis, stmulation and experimentation, we show that the system is able to provide a
small global error estimate of the spatio-temporal distribution of people in indoors environments
despite the absence of continuous sensing when doing local information processing and sparse
coverage. Moreover, we show that performance of the system degrades gracefully in the presence
of memory and people mobility constraints. In the paper we show the results of people density
estimation, power consumption, memory usage, latency and detection probability on a real
system deployment comprised of 16 nodes running in a research building at the University of
California, Merced.

INTRODUCTION

uptime.

LIn this paper, the term duty-cycle refers to ratio of the active sensing time of the camera to the total camera
It is not to be confused with the conventional engineering definition which is the proportion of time an

electronic device is operated.



applications have benefited vastly from developments in the field of sensors. Networks comprising
of large numbers of these sensors have been deployed to gather data from the surrounding environ-
ment. From simple, inexpensive photo sensors to complex camera sensors, the acquisition of data
has grown easier but has imposed a greater challenge on the data-processing side.

Wireless sensor networks have eased the burden of deployment, but the principal challenge
of getting meaningful data from these sensor networks within the constraints of the application,
still remains a largely unsolved problem. For example for surveillance applications, the sensor
should have the computation capapbility to filter the noise in the video/image data. In order
to extract maximum information/features from the captured data, a large number of sensors are
usually deployed. Lastly, network connectivity and power consumption per node control the effective
lifetimes in wireless networks. Thus, data fidelity, cost-effectiveness and network lifetimes pose
conflicting requirements that need to be balanced. In this paper, we chiefly concentrate on the first
i.e. data-fidelity, in view of an object detection and tracking application using image data from
Cyclops, a low-power camera sensor board [1]. Object detection and tracking dictates the use
of image processing algorithms which are expected to filter and extract meaningful data from the
image data generated by Cyclops. The time required for data processing should not be too high,
else it will degrade the information being collected by the network (increase in missed detections).

In this paper, SCOPES, a distributed smart camera object position estimation sensor network
system is presented. We develop a density estimation application from the object detection and
tracking data obtained from the system that provides maps of the distribution of people in indoors
environments. SCOPES uses local adaptive techniques that enable each node to maximize its active
sensing period while keeping the information processing time to a minimum. The system switches
between the fast and simple background subtraction algorithms for object detection, to the more
computationally intensive grouping algorithms for estimating the number and direction of travel of
persons in the local field of view. Using the information gathered from multiple nodes, we are able
to construct a map showing the density of people in a section of the building.

The main contributions of our paper are as follows:

e developing a prototype implementation of an personnel tracking systems that allows the po-
sition estimation of people in indoor environments.

e developing local adaptive algorithms that combine object detection and background update
and minimize the amount of information transmitted for processing.

e actual deployment results for a representative application, together with extensive perfor-
mance evaluation.

The rest of this paper is organized as follows: in Section 2, we present a brief summary of
object detection and tracking systems from a hardware and software perspective. In Section 3,
we describe the hardware and software architecture of SCOPES, along with details of the object
detection and tracking algorithms, and the system deployment. In Section 4, we provide some
simple mathematical analysis through simulation and the experimental results of the performance
of the system with respect to density estimation, quality of detection and tracking, operational
duty-cycle, power consumption and data delivery latency. Finally, in Section 5, we conclude by
summarizing our results and discussing future work.



2 RELATED WORK

Object detection and tracking systems depend on the underlying hardware and software infrastruc-
ture for their efficient performance.

The software infrastructure comprises of image processing algorithms for feature extraction
and interpretation from the incoming data (images/video). In [2], design of a feature extractor is
described for an image thresholding algorithm. It involves extracting the “expressive” and “discrim-
inating” features using a modified Hebbian learning approach. In [3], a principal feature extraction
approach is proposed for classifying a pixel as belonging to the background or foreground. Han
et al. [4] describe a multiple hypothesis approach for pruning the possibilities of the number and
trajectories of objects in the video stream.

However, these techniques are computationally intensive and find use in surveillance and moni-
toring applications with permanent deployments and no dearth of processing and communications
capabilities. Such techniques are not suitable for implementation in resource-constrained, unteth-
ered platforms like wireless sensor networks that have to maintain a fine balance between a long-life
and operational performance.

The hardware infrastructure for object detection and tracking systems ranges all the way from
binary sensors to sensors delivering high quality video over 802.11 networks [5]. Some of the networks
[6] demonstrated for use in tracking movements of objects comprise of hundreds of small, densely
distributed wireless sensor nodes deployed in the field. They utilize collaboration between neighbors
to detect and track a moving target, and alert other sensor nodes along the projected path of
the target. In [7, 8], SensEye, a multi- tier camera sensor network is described for surveillance
applications. The work aimed at showing that a multi-tier network can balance the conflicting
goals of latency and energy-efficiency. However, the experiments conducted in some of these works
[7, 8, 6] are not representative of real-world scenarios.

Using a binary sensor network [9], Aslam et al. describe a framework for tracking a moving object
by using a particle-filter algorithm. However, these sensors do not provide enough information to
localize the object. In [10], VigilNet, a detection and classification system is described which is
used for tracking the motion of ferrous objects. It combines information from magnetometer and
acoustic (microphone) sensors to infer the location and direction of travel of objects. Information
is condensed by the group head node to avoid overwhelming the base station with data. In [11],
a similar approach using MICA2 motes along with magnetometer sensors is shown for detecting
objects capable of generating magnetic fields. In [12], Ren et al. propose an analytical framework
for object detection in sensor networks and develops wave sensing scheduling protocols to maximize
network lifetimes while achieving bounded worst-case object detection quality.

In contrast, using smart cameras we can overcome restrictions like magnetic fields. Also, our
work addresses issues like maximizing the sensing period for camera sensors using local adaptive
image processing algorithms. This enables switching between the fast background subtraction and
the computationally intensive pixel grouping algorithms, while accounting for changes in the back-
ground. We present results from a real-life deployment of the system regarding quality of detection
and tracking, information arrival latency, memory and power consumption in view of a position
estimation application which provides maps with distribution of people in indoor environments at
any point of time.



3 SYSTEM DESCRIPTION

In this section, we describe the SCOPES system, including the hardware and software architecture,
as well as the algorithms and the details of the experimental deployment used.

3.1 Hardware

Our SCOPES implementation comprises of an Agilent Cyclops camera interfaced with a Moteiv
Tmote Sky [13] module via an intermediate custom adaptor board. The Cyclops camera performs
local detection and processing of the visual information and the Tmote module provides multi-hop
communication capability. The Cyclops board and the Tmote share power from the Tmote’s battery
back.

Cyclops: The Cyclops consists of an Agilent ADCM-1700 imager module, an ATMEL ATmegal28L
micro-controller (MCU), a Xilinx XC2C256 CoolRunner CPLD, an external SRAM (0.5MB) and an
external Flash (0.5MB). The MCU controls the Cyclops sensor, sets the image capture parameters
for the imager, instructs the imager to capture a frame, is capable of running simple image processing
algorithms and is responsible for communication with host Tmote module. The Cyclops uses the
external SRAM to supplement the limited internal MCU memory (4KB). However, as the MCU
can address a maximum of 64KB of memory, the external SRAM and Flash is divided into eight
64KB memory banks. The entire 512KB of SRAM can be utilized by switching between memory
banks.

Tmote: The Moteiv Tmote Sky module is comprised of an ultra low power Texas Instruments
MSP430 F1611 micro-controller featuring 10kB of RAM, 48kB of flash and a Chipcon CC2420
radio for wireless communications. Tmote Sky has two expansion connectors, a 10-pin and a 6-pin
IDC header. The Cyclops is connected to the Tmote module through these expansion connectors.
The Cyclops is powered by the voltage pins mirrored on the expansion connector. Communication
between the Tmote and the Cyclops is carried over the I2C bus. Whenever the Cyclops wants
to transfer information to the Tmote, it interrupts the operation of the Tmote using an external
trigger pin connected to the User Interrupt pin on the expansion connector. The Tmote then posts
a read request to the slave device, which cyclops responds by sending the data over the I12C bus.

Interface Board: The interface board has a 51-pin Hirose connector on one side and a 10-pin and
6-pin female connector on the other side for accommodating the Cyclops board and the Tmote Sky
module, respectively. The interface board also contains pull-up resistors for the clock and data lines
for the 12C bus on the Tmote.

3.2 Software

The Cyclops and the Tmote run the event-based TinyOS operating system for wireless sensor
network platforms. The Cyclops and the Tmote run the event-based TinyOS operating system for
wireless sensor network platforms. TinyOS is written in nesC. It is characterized by a small memory
footprint and direct-access to the underlying hardware. TinyOS has a synchronous execution model
wherein a task will run to completion if not preempted. Due to this, long computations are split into
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Figure 1: Software Block Diagram of SCOPES. The figure shows the different operations being
executed on the Cyclops and Tmote modules. The arrows indicate the logical sequence of operations
and interactions between the two devices.

2B 1B 1B 108 8B 8B 8B 8B
CUMULATIVE BANK  |NUM.OF OBJECTS | (g |...|p |p.|OBJECT1 |OBJECT2 | OBJECT3 | OBJECT 4
NUM. OF OBJECTS | NUMBER | CURRENT FRAME o\ g7 DpATA DATA DATA DATA
INITIAL INITIAL NUMBER OF APIXELS TOTAL X TOTAL Y THRESHOLD
X COO-RD| Y COO-RD | CONSECUTIVE FRAMES DISPLACEMENT | DISPLACEMENT | DIFFERENCE
1B 1B 1B 2B 1B 1B 1B

Figure 2: Cyclops Message Format. This is the payload of the TOS_Msg sent by the radio to the
base station. (Note: 1. B stands for bytes 2. Figure does not show the other fields used for
recording additional details like battery reading, routing tree information, time stamp, etc.)



smaller tasks that are posted sequentially. The TinyOS scheduler handles all the hardware resources
and ensures fairness among the different modules. A block diagram of the software framework is
shown in Figure 1.

Cyclops: The image processing (object detection and tracking) algorithms running on the Cyclops
for SCOPES are implemented within the matrix operations libraries. We added two new functions,
group and abssub2thres, in the matrixArithmetics interface. The abssub2thres function is responsible
for background subtraction and returns the cumulative absolute difference in pixel intensity for an
image. The group function groups neighboring pixels which exceed a preset threshold into objects
and stores information regarding their centroid, size and average threshold difference.

Whenever the Cyclops has anything significant to report, it triggers the UserInterrupt pin on
the Tmote. It waits for the Tmote to post an I12C read request to which it responds by sending
the payload comprising of centroid, size, threshold difference and direction information regarding
detected objects.

The structure of the cyclops payload (see Figure 2) is explained as follows: Cumulative Number
of Objects is the number of objects detected by the Cyclops till that time and acts as an implicit
sequence number, Bank Number is the current memory bank number, Number of Objects in Current
Frame is the number of objects regarding which we are transferring data in the payload and Fy,....,Fy
contain the number of objects detected in each frame. The object data is comprised of the initial
X and Y coordinates of the object (centroid), Number of Consecutive Frames is the number of
consecutive frames the object appeared in, nPixels is the object size in pixels, Total X Displacement
and Total Y Displacement are the displacements of the object along the X and Y axes and Threshold
Difference is the average absolute difference in threshold. This information is used by the centralized
Density Estimation Algorithm (see Section 3.3).

In addition to this, the Cyclops sends an “is active” status message to the Tmote every minute,
over the 12C bus.

Tmote: The Tmote runs a derivative of the TinyOS operating system called Boomerang provided
by Moteiv Inc., which provides extra function primitives like resource (I12C, radio) handlers, Mul-
tiHop communication (MultiHopLQI) and time synchronization (NetSyncM) native to the Tmote
module. The I2C, SPI, UART and USARTO lines are common in the Tmote. In order to exclusively
access any of these buses, a resource handle needs to be granted.

Whenever, the Cyclops activates the UserInterrupt pin on the Tmote, the interrupt handler
posts a resource request for proceeding with an I2C read operation. When the 12C resource is
granted, the Tmote requests data from the Cyclops using the appropriate slave device address.
After the read operation is completed, the resource is released by the Tmote. To ensure that the
Cyclops is functioning correctly, the Tmote expects an “is active” or “heart-beat” message from
the Cyclops every minute. If the Cyclops misses four consecutive “heart-beats”, then it is reset by
the Tmote. At the same time, every four minutes, the Tmote sends a “heart-beat” message to the
base -station with a special payload to differentiate it from the object detection payload from the
Cyclops. The TinyOS data packet sent over the radio is 76 bytes long (TOSH_DATA_LENGTH).



Cyclops nFrames
Action 1 3 ) 7 10
Image Capture Only 0.68s | 1.04s | 1.43s | 1.85s | 2.51s
Image Capture w/ Background Subtraction (BS) | 0.7s | 1.15s | 1.54s | 2.01s | 2.74s
Image Capture w/ (BS + Object Grouping) 1.3s | 2.76s | 4.71s | 6.49s | 9.50s

Table 1: Average Time (in second) required for executing various image processing operations
nFrames images at a time for the Cyclops camera. The time information was recorded by executing
each of the operations 100 times on two different Cyclops camera modules.

3.3 Algorithms

Object detection is of great importance in surveillance and monitoring applications. It should be
robust to noise, adaptive to gradual changes in background —such as illumination changes— and
have low processing latency in order to capture significant events. The first step is background
subtraction, followed by object detection and grouping, and finally, the direction inference part.
Table 1 shows the time taken to execute some of these operations.

Background Subtraction: In order to achieve low processing latency and to maximize the proba-
bility of capturing significant objects, we implemented a modified version of the simple background
subtraction algorithm to determine the presence of an object in the foreground. Here, we compute
the absolute difference in value for each pixel in the current image and the background. The sum
of difference in values for all the pixels and the difference per pixel in the current image provides a
measure of change in the foreground with respect to the background. If this change is significant,
it acts as a weak indicator of the presence of an object. In our approach, we maintain a moving
average of the mean and deviation of the difference in value per pixel for all images.

Mean = (1 —§) x Mean + 6 x Dif ferencePerPixel
Deviation = (1—4) x Deviation +
+ 6 x |Dif ferencePer Pizel — Mean|

Depending on the value of the Mean and Deviation, the cyclops decides whether to process the
image for presence of object.

Object Detection if (Mean > 1.5 x Meany and
Deviation > 0.1 + Deviationy)
Background Update if (Mean > 1.5 x Mean, and
Deviation < 0.1 + Deviationy)
No Operation otherwise

For our purpose, the value of § is set to 0.8 so as to impart a greater weight to the current image
information as compared to the history information from old images. Meany and Deviation, are
preset to 2 and 0, respectively 2.

2The group and abssub2thres functions were implemented in MATLAB and applied to a set of 16,000 images

7



| Pixel b | Pixel d |  Action |

- - new group id
abc Gy - group G4
- G group G,
d x Gy Gy group G
Merge G5 in Gy

Figure 3: Grouping Pixels  Table 2: Basic algorithmic rules for group assignments for pixel x.
(Note:— indicates group id is not assigned.)

Object Detection: To detect the presence of significant objects in the foreground, we group
neighboring pixels with absolute difference in intensity greater than the threshold. This is done by
raster scanning the image starting from the top left corner. A pixel is considered to be part of an
object if the absolute difference in intensity of the current pixel along-with that of its left neighbor,
top neighbor, top-left neighbor and top-right neighbor exceed a pre-specified threshold (42, in our
case). For example, in Figure 3, let « be the pixel in consideration and a,b,c and d are its top-left,
top, top-right and left neighbors, respectively. Then, if absolute difference in intensity of z, a, b, ¢
and d exceeds a pre-specified threshold, then x is considered to be part of an object.

Group id’s labels are assigned for each pixel using a raster scan. Assigning group id’s is done
using the rules explained in Table 2. After grouping pixels based on individual and spatial threshold
criteria, each of these primary groups which are in close proximity of each other are merged together
to account for fragmentation of a big object. For each of the objects, we maintain information
regarding the centroid (x and y coordinates), number of pixels and average difference in threshold.

Direction Inference: The next step after object detection is to infer its direction information.
In order to do that, we match objects in successive frames according to their size (in pixels). Any
object in current frame that cannot be matched to another in the previous frame is stored as a new
object. Objects from previous frames that disappear or cannot be matched to objects in current
frame are moved into a data structure. We maintain information regarding the original position,
displacement and number of consecutive frames for each object that appears across successive images
in the current memory bank. After processing all the images in the current bank, we generate an
array of structures that contains information on a maximum of four most significant objects based
on appearance in maximum consecutive frames.

Density Estimation Algorithm: On the base station, the packets coming from the various nodes
are deconstructed. Messages are classified by source (node id) and time of occurrence. From the
object data in the Cyclops payload, we can infer the direction of motion from the initial position
and the displacement vector. Since, we have prior information about the deployment of the nodes,
the path and final destination is inferred by accounting for the presence of walls and doors in the
vicinity of the node. Objects with no direction information are considered as noise and filtered
out. Since, the entry point and exit vector of an object is computed, the distribution of people in
sections of the building can be determined.

captured sequentially by the Cyclops. We used the MATLAB implementation as a sandbox to test the effect of
different parameters (6, Meang and Deviationg) on the performance of the object detection and grouping algorithms.
The initial values for these parameters were set based on the MATLAB results.



Term Meaning

nFrames | number of images captured consecutively
nBanks | number of memory banks (see Sec. 3.1)
Ts total cyclops sensing time (camera ON),
which depends upon nBanks

TgFrames | cyclops sensing time for nFrames images

Tgs total background subtraction processing
time for nBanks X nFrames images

Toc object grouping processing time per image

P power consumption per node

DP detection probability per node

DFP detection failure prob. per node, 1 — DP

Table 3: Notations used in the paper with the associated meanings.

4 PERFORMANCE EVALUATION

In this section, we report results from a performance evaluation of SCOPES. A combination of simple
mathematical models using simulations and real-life deployment results is used to understand the
behavior and to validate the performance evaluation of the system.

4.1 Objective Functions, Notation and Constants

Our aim for SCOPES was to function as a surveillance system to monitor the occupancy in indoor
environments such as office buildings. Surveillance systems are characterized by their ability to
detect and track the movement of people. The performance of the system is determined by its
ability to effectively monitor the target area for movement of individuals. Some metrics/objective
functions which are of interest are as follows:

Global/Local Density Estimate: How good can we estimate the occupancy in the total area
covered? How accurately in each partition area?

Power Consumption: What is the lifetime of the system when powered using batteries?

Memory Usage: How much memory is required to achieve acceptable performance? How is
the performance affected as a function of the memory size?

Detection Latency: How long does the system take to estimate the position of a person?

Detection Probability: How good is the estimate of flow movement across different partition
areas within the building?

Table 3 shows the basic notation for many parameters used in the remaining of the paper.
Many of these parameters may affect one or more objective functions. Our goal is to maximize the
people density estimation and the detection probability, while minimizing the detection latency,
memory usage and power consumption, but they pose contradictory requirements. Analyzing these
trade-offs when proposing a solution is on the the key contributions of this paper.
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Figure 4: Duty Cycle as a function of the total number of frames with an object. As the number
of frames/images increases, the duty cycle decreases since each SCOPES node spends more time
processing the images using the CPU intensive grouping algorithm.

4.2 Analysis and Simulation

To understand the relationship between our objective functions and the different parameters we
present some simple mathematical analysis and simulation.

We model the arrival times of people passing under a camera with an exponential distribution.
The probability density function (pdf) of an exponential distribution has the form

e ™M x>0

f(x;A)Z{O <0

where % is the mean arrival time for an event. A timeline of events is reconstructed from these
arrival times. The number of frames in which an object appears is modeled by a uniform distribution
(min=2;max=10) to account for variation in speed of people. We simulate the operation of a

SCOPES node positioned to observe these events.

Duty Cycle (DC): is the ratio of total sensing time to the total uptime of the camera. Un-
derstanding the Duty Cycle is critical, since it affects many of our objective functions, including
global/local position estimation, power consumption, detection probability and detection latency.

In Figure 4, we observe the variation in duty-cycle of a node with respect to the number of
frames in which an object is detected. It can be expressed as:

T
> (1)
Ts+Tps+ N xToa

The number of grouping function calls N vary from 1 to 80 which is the total number of images
captured in one duty-cycle using all available memory. Since the grouping function incurs the
highest processing cost in terms of time, the duty-cycle of a node chiefly depends upon the time
spent in grouping pixels for object detection.

In Figure 5(a), we observe the variation in duty-cycle of a node with respect to the mean arrival
time % of an individual observed beneath a camera. This relationship can be expressed as follows:

DC =

10
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Figure 5: Fig. 5(a) shows the Duty Cycle as a function of the mean arrival time. The duty cycle
increases as the mean arrival time increases due to a reduction in processing time since there are
not that many objects to process. Fig. 5(b) shows the Duty Cycle as a function of the mean arrival
times for different number of memory banks available. The duty cycle gets significantly affected by
the amount of memory for small arrival times. For large mean arrival times, the amount of memory
does not play a significant role.

n(Ts + Trs) + Yy aifiToc

where n is the number of times we capture a set of 80 images, «; is the number of times an event is
observed and 3; is the average number of frames occupied by an object in the current (i*")sensing
cycle. When the mean arrival time is low, events occur at a faster rate, and the camera spends a
longer time processing the image data, leading to a low duty-cycle.

In Figure 5(b), we observe the variation in duty-cycle of a node with respect to the number of
memory banks nBanks as a function of the mean arrival times of an individual observed beneath a
camera. The only factor that is affected by the number of memory banks is Tg as Ty = nBanks x
TaFrames  This relationship can be expressed as follows:

DC
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Figure 6: Power Consumption as function of the mean arrival times. The power consumption is
dominated by the total sensing time, which does not significantly change with the arrival times.
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Device Operation Power Consumption
Cyclops Image Capture 45mW
Cyclops Micro-Controller Active 15mW
Tmote MCU + Radio RX 65.4mW
Tmote MCU + Radio TX (0 dBm) 58.3mW

Table 4: Power Consumption of the Cyclops and Tmote Sky Modules (for a 3V battery).

DC = ngnBanksTg}F?”ames) ] (3)
n(nBanksTEF ™™ 1 Tgg) + 5" cafiloc

When the number of memory banks is small and the mean arrival time is also low, a node spends
a greater percentage of its time processing the image data. The Duty Cycle increases as either the
amount of available memory (nBanks) increases or if the mean arrival time is high. If the system
is expected to be deployed in a busy area, it should be provided with sufficient memory resources.

Power Consumption (P): in Figure 6, we observe the change in power consumption as a function
of the mean arrival times of an individual observed beneath a camera. Here the transmission and
reception power of the Tmote is set to maximum. This relationship can be expressed as follows:

P _ Psensing + Pproc + PRX + PTX (4)

cyclops cyclops tmote tmote

sensing . . PTOC . .
where P, > " is the power consumed during image capture, P, .. is the power consumed during

image processing, PEX, and PIX. is the power consumed by the radio during reception/idle and
transmission, respectively.

Most of the time the Cyclops is capturing images which accounts for most of the power con-
sumption. Also, the Tmote spends almost all of its time in receiving/idle mode for routing purposes
and this is independent of the mean arrival time of an object beneath the camera. For this paper,
we experimented mainly with the detection and tracking aspects of the system and the nodes were
active (on) all the time which led to this kind of behavior as regards power consumption. The power

consumption of the Cyclops and Tmote Sky modules is given in Table 4.

Detection Failure Probability (DFP): This is the probability that none of the camera nodes cov-
ering a transition area detects the movement of a person. The main dependency is the Duty Cycle,
since it will directly affect the probability of detection of each node. The relationship can be
expressed as:

DFP = (1 — Duty Cyle)" (5)

where n is the total number of nodes covering the same transition area. Figure 7 shows the expected
failure probability of detection decreases both as the Duty C'ycle increases and the number of nodes
n increases. The numbers shown in the graph are the lower bound for the DFP i.e., in real-life the
DFP will be higher because of the errors introduced by the limited computational capability of the
nodes.
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4.3 Experimental Deployment

We deployed 16 nodes on the ceiling in the corridors of the Second Floor of the Science and Engi-
neering Building at the University of California, Merced. We separated the floorplan into 5 sections
by deploying the nodes in sets of 4 nodes at entry/exit points. We employ multiple nodes as the field
of view for a single node is not enough to cover the whole corridor and 4 nodes help ensure a reliable
reading in the presence of interleaved sensing and image-processing periods. We also attached relay
nodes on the ceiling for the sole purpose of improving the connectivity of the network and to ensure
that we do not drop packets in the event of network congestion. The messages coming from the
nodes are timestamped and stored in a log file at the base-station.

Moreover, we installed two Panasonic KX-HCM280A networked web cameras at strategic lo-
cations in the corridor to record the movement of people passing beneath the cameras. They are
capable of capturing images at 10fps at a resolution of 640 x 480 and include built-in server software
for controlling the camera from a standard web browser. The server uploads the images, periodically,
into a laptop attached to the provided ethernet port using FTP. These images are timestamped
using the local time of the laptop which have been synchronized using NTP. The images form the
ground truth with respect to which we compare the data sent by the nodes.

4.4 Experimental Results

In this section we discuss the performance results of our experiments based on the different objective
functions and goals.

The first aspect we address is the evaluation of the SCOPES system to build density estimation
maps of area occupancy in a building, as well as transitions across the different sections.

Figure 8 shows the results of the different density estimation maps built at different times
of the day. For these results, we use 8 memory banks (nBanks = 8) each recording 10 images
(nFrames = 10). On each section, we plot the estimated number of people occupying the section
followed by the ground truth value we got from the manual webcams video analysis. We also show
the estimated number of incoming and outgoing movement of people across the different sections
with arrows indicating the direction of travel. From the results we see that with a modest number
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Figure 7: Detection Failure Probability as a function of density of nodes covering the same area
and the DutyCycle.
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Figure 8: Occupancy and Flow Estimation Maps created from data acquired from the cameras.
(The arrows indicate the direction of motion. The number above the arrow indicates the number
of people travelling in that direction as observed by the SCOPES node (number on the left) and by
the Panasonic network cameras (number on the right).)

of sensor nodes, we are able to track the movement of people over more than 73 sq. meters of the
second floor south wing part of the Engineering Building with a small reasonable error.

Figure 9(a) shows the average density estimation error of all the sections at different times of the
day. The error bars show the standard deviation of the results. Since, the error bars are overlapping,
we can say that the error does not change significantly in the statistical sense. We see that error
remains bounded to reasonable values (under 2) at all times of the day.

We would also like to explore the minimum error possible SCOPES could achieve as a function
of the density of the deployment. Figure 9(b) shows experiments done with 4, 5 and 6 nodes per
band covering the different sections. It is clear that deploying 6 or more nodes would result in a
negligible failure rate.

In the next graphs, we explore how the detection latency and the detection probability perform
as we constraint the amount of memory available to the nodes. Figure 10(a) shows the detection
latency, i.e. the time it takes for SCOPES to know about a person transitioning among different
areas. We see that as we decreased the amount of memory, the detection latency actually decreases,
from 18 seconds when using 8 memory banks, to 10 seconds when using only 1 bank. The reason
for this behavior is mainly due to the fact that the maximum processing time as we reduce the total
number of banks gets significantly reduced, allowing the nodes to inform of the presence of a person
moving much faster. Note that a possible performance optimization with applications that require
the lowest detection latency could be to process all the information bank by bank, despite the total
number of banks available, and in case of a person being detected, immediately transmit the meta
data toward the base station. The only problem might be additional network traffic caused by data
that could not be aggregated at the local node.

While the reduced number of banks could in principle reduce the detection latency, we would like
to evaluate the probability of detection in this case. Figure 10(b) shows that detection probability
gets significantly higher as we increase the number of memory banks available. From Figure 5(b)
we learned that as numbers of memory banks available increases, duty cycle also tend to increase.
A higher duty cycle implies a larger probability of detection, which is what happens in this case.
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Figure 9: Fig. 9(a) shows the Average Position Estimation Error per section for different times of
the day. The position estimation error tend to be stable and small over time. The error shown
on the Y-axis is in terms of number of people. Fig. 9(b) shows Detection Failure Probability as a
function of the density of nodes covering the same area. The detection failure probability converges
to a very small value after 6 nodes.
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Figure 10: Fig. 10(a) shows the Detection Latency as a function of the number of memory banks.
The latency tends to increase as we increase the available memory due to larger sensing and pro-
cessing periods before transmission. Fig. 10(b) shows the Detection Probability as a function of the
number of memory banks. The detection probability tends to increase as we increase the available
memory due to larger duty cycle and higher probability of a person walking down the camera while

sensing.
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5 Future Work and Conclusions

In this paper, we presented SCOPES, a distributed smart camera object position estimation sensor
network system. We developed a density estimation application from the object detection and
tracking data obtained from the camera sensors that provides maps of the distribution of people in
indoors environments. Using analysis, simulation and extensive experimentation, we show that the
system is able to provide a small global error estimate of the spatio-temporal distribution of people
in indoors environments despite the absence of continuous sensing when doing local information
processing and sparse coverage. We also investigated the performance of the system with respect
to memory usage, detection latency and detection probability on a real system deployment.

As part of future work, we plan to study several aspects of camera networks not covered in
this paper. We would like to continue the experimental profiling of aspects we did analytically.
We would also like to investigate and provide analysis of missed detections. We aim to develop
sensing scheduling algorithms which would enable us to improve the lifetime of the network without
sacrificing performance. We would also like to investigate the tradeoff between the detection latency
and the additional network traffic generated by sending individual object data messages.
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