
Improving Wireless Simulation Through Noise Modeling

HyungJune Lee†, Alberto Cerpa‡, and Philip Levis†

†Computer Systems Laboratory ‡School of Engineering
Stanford University University of California, Merced
Stanford, CA 94305 Merced, CA 95344

abbado@stanford.edu acerpa@ucmerced.edu
pal@cs.stanford.edu

Abstract
We investigate how to efficiently and accurately simulate
wireless packet delivery. Starting from recent experimen-
tal results that have quantified signal-to-noise ratio (SNR)
curves, temporal variations in propagation strength, and the
effects of hardware variations, we model packet delivery us-
ing SNR. We experimentally measure noise in many different
environments and propose three algorithms to simulate noise
from these traces. We evaluate these algorithms in com-
parison to existing simulation approaches used in EmStar,
TOSSIM, and ns-2 using the Kantorovich-Wasserstein dis-
tance on conditional packet delivery functions. We demon-
strate that using a closest-fit pattern matching (CPM) noise
model can capture complex temporal dynamics which exist-
ing approaches do not, increasing packet simulation fidelity
by a factor of 2 for good links and a factor of 3 for inter-
mediate links. Furthermore, as our models are generated
from real-world traces, they are not bound to specific envi-
ronments and can be easily applied to new ones.

1. INTRODUCTION
Simulation is a critical part of developing, testing, and

evaluating sensornet protocols and systems. Having com-
plete control of the simulated environment allows us to run
reproducible experiments, explore parameter spaces, and
disambiguate causes of error or undesirable behavior. The
inherent difficulty in developing robust sensornet codes has
led many tools to focus on system dynamics through real-
code simulation [2, 11, 14, 21].

Very accurate system simulation allows users to test code
paths. It does not, however, promise a representative exe-
cution environment. First and foremost, low-power wireless
networks have many complex, rare, and difficult behaviors
and that protocols must address properly in order to be ef-
fective in practice [5, 6, 9, 20, 23]. Early studies noted that
packet delivery rates are highly variable over distance [9, 23].
Many existing simulators have used the high-level packet
delivery data from these experiments in their network mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

els [11, 14]. While this approach allows simulators such as
TOSSIM and EmStar to have packet delivery behavior sim-
ilar to the real world. However, as these simulators simulate
the loss itself rather than its causes, they are unable to easily
or accurately model novel environments, concurrent trans-
missions, or variable packet sizes.

Recent investigations into low-cost radio hardware has
distinguished how many different factors, such as hardware
calibration, interference, and orientation affect packet deliv-
ery [19]. In particular, these and other results [16, 20] have
verified that packet delivery follows a simple SNR curve.
Furthermore, these studies have shown that the RSSI of re-
ceived packets (the S of the SNR) is often very stable over
long periods. Taken together, these observations point at
the causes of temporal variations in packet loss and bursty
connectivity. Hardware variations cause node pairs to have
different SNR curves, but for any given pair the curve is
precise. As RSSI is generally stable over short periods, it
is reasonable to conclude that the missing piece of the RF
simulation puzzle is the environmental noise.

Unfortunately, simulating environmental noise is hard. Un-
like hardware-based noise, which is typically modeled as ad-
ditive white Gaussian noise (AWGN), environmental noise
is often from packet-based devices. Section 2 shows how
packet based noise appears as brief, strong, short-lived noise
spikes which can be temporally correlated. To simulate this
noise, we gather 1kHz noise traces using current 802.15.4
sensor node platforms and use these traces to generate sta-
tistical models of noise using three techniques, presented in
Section 3: probabilistic sampling, closest-fit pattern match-
ing (CPM), and a non-Gaussian random process. We sim-
ulate radio packet delivery with these noise models using
an SNR/PRR curve. Whenever a simulated node receives
a packet, it samples a noise reading from one of these mod-
els to determine the SNR and computes the packet delivery
probability.

We have implemented these approaches in the TOSSIM
simulator of TinyOS 2.0. Section 4 evaluates how well the
algorithms as well as wireless protocol simulators such as
EmStar [11], TOSSIM 1.x [14], TOSSIM 2.x [4], and NS-
2 [1] simulate packet delivery dynamics for good, intermedi-
ate, and poor links. To capture temporal packet dynamics,
we evaluate simulation accuracy using conditional packet
delivery functions (CPDFs), which describe the probabil-
ity a packet will be delivered successfully after n consec-
utive failures or successes. We compare CPDFs using the
Kantorovich-Wasserstein distance [12]. Our results indicate

(a) Lake Lagunita, channel 26

(b) Lake Lagunita, channel 18

(c) Meyer Library, channel 18

(d) Meyer Library, channel 18, during nearby
heavy 802.11 use

Figure 1: 4 second 1kHz noise traces of 802.15.4
channel 26 and 18 measured at an outdoor park
and in a library with dense 802.11b coverage. Noise
sources in the 2.4GHz band are discrete but show
significant temporal correlation.

that existing techniques are sufficient for environments with
little noise, but for noisy environments closest-fit pattern
matching significantly outperforms all other approaches.

We have gathered noise traces for a variety of environ-
ments, including busy and quiet indoor office environments,
outdoor areas with 802.11 connectivity, and outdoor envi-
ronments with no interfering traffic (the Grand Canyon).
Section 6 discusses the implications and limitations our ap-
proaches as well our planned directions of future work. Our
results suggest that an effective route towards accurate wire-
less simulation is to simply measure a diverse set of environ-
ments and generate statistical models of them.

2. BACKGROUND
Accurately simulating wireless packet delivery is a long-

standing challenge in sensornet research. Early studies [17]
used a unit-disc model, which defines transmission range as
a simple disc of binary connectivity; nodes within a range
r successfully receive packets, while those outside r do not.
This model, while simple to implement and reason about,
has little basis in reality. Experimental studies have shown
that connectivity varies tremendously over distance [10, 23]
and that many links fall into a “grey region” of intermediate
packet delivery success.

In response to the observation that connectivity is more
complex than what simple disc or RF propagation models
(such as those used in ns2 [1]) can express, sensornet simula-
tors have for the most part adopted an empirical approach.
Rather than try to model the underlying causes of RF con-
nectivity, such as interference, noise, and RF propagation,

an empirical approach merely recreates packet-level behav-
ior. For example, TOSSIM takes inter-node distances and
samples from a packet reception rate (PRR) distribution
to determine the connectivity between a pair of nodes [14].
This simple approach can capture a large number of real-
world complexities, such as link asymmetries and highly
variable spatial connectivity. However, it also makes sim-
plifying assumptions that do not hold in practice. First
and foremost, this approach assumes that every link is inde-
pendent (they are sampled independently from the distance
distribution), while real networks tend to have “bad” nodes
with poor connectivity. This simplification causes discrep-
ancies between simulation and testbed experiments, such as
those observed in the Trickle algorithm [15].

The EmStar system [11] avoids the independence prob-
lems of TOSSIM by having one of its radio models using
PRR values measured in real-world networks [5]. This has
the benefit of capturing effects such as poor receivers. The
cost is that it can only simulate networks for which PRR
has been measured. The EmStar and TOSSIM approaches
assume that packet losses are independent (PRR does not
change), but experimental results have shown that PRR
varies significantly over time [5, 6].

Recent studies have begun to shed light on the under-
lying causes of the complex packet delivery behavior ob-
served in real networks [19]. One important observation
from these studies is that for a given node pair, there is a
crisp SNR/PRR curve. Effects such as a wide reception grey
region are caused by different pairs having different curves
and variations in observed signal strength. These effects can
be captured with reasonable accuracy through a hardware
covariance matrix [24].

Experimental studies of current sensornet platforms, such
as the micaZ and telosB, have shown that signal strength is
stable over short periods of time, but can have longer-term
variations due to environmental conditions [16, 20]. How-
ever, computing PRR from an SNR curve requires the noise
as well as the signal. As sensornets often operate in un-
licensed ISM bands, their spectrum is crowded with many
conflicting transmitters. 2.4 GHz, the band used by micaz,
telos, and imote2 nodes, is particularly crowded, as it is also
occupied by 2.4 GHz phones, 802.11b/g, microwave ovens,
and Bluetooth, all of which interfere significantly. With-
out these considerations, SNR-based simulation models are
fundamentally limited in accuracy.

The hypothesis of this paper is that coming up with an ef-
ficient and effective model of environmental noise will allow
a sensornet simulator to accurately model packet delivery
using an SNR/PRR curve. We leverage the observations
and advances of prior work to achieve this goal. From Zu-
niga et al.’s experimental work [24] we borrow the idea of
hardware covariance matrices to govern the SNR curve of a
node pair. From EmStar we borrow the idea of measuring
real environments to derive a representative model. Once
we have derived a per-node noise model, we plug it and the
RSSI of a transmitter into a SNR curve to compute packet
delivery probability. Simulating noise allows us to capture
short-term connectivity variations, such as those caused by
a large burst of 802.11 traffic.

The challenge in simulating 2.4GHz noise is that it does
not follow a clean and elegant mathematical model. Because
much of the interference is 802.11 traffic, it has a highly bi-
modal behavior: an 802.11 node is either transmitting or

802.11b

802.15.4

5 MHz

3 MHz
25 MHz

22 MHz

Channel 1 Channel 6 Channel 11

11 12 13 14 15 16 17 18 19 20 21 24 25 26

2480
MHz

2475
MHz

2450
MHz

2425
MHz

2400
MHz

Channel

Figure 2: 802.11b and 802.15.4 spectrum utilization.
Channel 18 in 802.15.4 heavily overlaps with 802.11b
channels, while channel 26 in 802.15.4 has no overlap
with 802.11b spectrum.

not. Instead of a Gaussian process or wave, transmissions
are a discrete signal with highly variable temporal charac-
teristics. Figure 1 shows four noise traces from different en-
vironments on 802.15.4 channel 18. Lake Lagunita at Stan-
ford is almost free of 802.11b interferences and other noise
sources. On the other hand, Stanford Meyer library has
many 802.11b access points and so has severe 802.11b inter-
ference. The periodic peak values in the plots are 802.11b
beacon packets at a frequency 9.765 Hz (0.1024 sec). The
next section describes three approaches to statistically mod-
eling 2.4GHz noise, and Section 4 evaluates how well these
approaches reflect real-world behavior in comparison to com-
monly used simulators.

3. NOISE CHARACTERIZATION
This section describes three approaches to statistically

characterize noise traces. The first approach, naive sam-
pling, generates a probability distribution of a noise trace
and simply samples from this distribution. Naive sampling
is fast and simple, but makes the assumption that noise sam-
ples are independent. The second approach, closest-fit pat-
tern matching (CPM), computes the conditional probability
distribution of noise values given n previous noise readings.
It generates a noise value based on the matching series and
defaults to the mode when no measured series matches. The
third approach uses a non-Gaussian random model with the
correlation distortion method in order to describe noise as a
random process. This has the advantage that it can capture
temporal dynamics, but is computationally expensive and
has difficulty with signals that are highly non-Gaussian.

3.1 Measuring Noise
To measure environmental noise, we wrote a TinyOS ap-

plication that samples RF energy at 1kHz by reading the
RSSI register of the CC2420 radio. The register contains
the average RSSI over the past 8 symbol periods (125µs).
The application logs this data to flash for a fixed period of
time (3 ∗ 216 samples, so ≈ 197s). A PC application reads
the data off of the mote. We sampled noise on different ra-
dio channels in a wide range of environments, including in-
side WiFi enabled buildings (Meyer Library at Stanford), in
outdoor WiFi enabled areas (Lake Lagunita at Stanford), in
outdoor quiet areas (Grand Canyon), and during controlled
tests (a large HTTP download in Meyer Library).

Figure 1 shows 4 second periods from four gathered noise
traces. These traces show three key characteristics of noise
in the 2.4GHz band. First, noise tends to have discrete
spikes, which are as much as 40dBm above the noise floor.
These spikes typically but not always represent transmis-

U[0,1] Noise

-110 -100 -90 -80 -70 -60 -50 -40 -30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative Mass Function for Real Noise

RSSI (dBm)

C
M

F

(a) Simulating noise with naive sampling.

(b) Sample noise trace from naive sampling
using heavy traffic Meyer trace.

Figure 3: Simulating noise with naive sampling. By
generating a uniformly distributed random variable
in [0,1], a noise sample can be derived by filtering
with CMF function of measured noise.

sions from copresent wireless packet networks. As Figure 2
shows, 802.11 shares spectrum with the 802.15.4 radios used
in several sensor platforms. Second, many of these spikes are
periodic. For example, 802.11b base stations transmit bea-
cons every 0.1024s. Third, noise is temporally correlated:
there are periods of activity and periods of quiet.

The rest of this section describes three approaches to
modeling 2.4GHz noise: naive sampling, closest-fit pattern
matching, and the correlation distortion method.

3.2 Naive Sampling
Because copresent packet networks represent discrete event

sources, probabilistic sampling is a simple way to model
noise. This approach works by computing the distribution
of noise values and sampling from the distribution whenever
a noise value is needed. This approach has the benefit that
generating the model and taking samples from it is very fast.

Assuming that each noise sample is independent, simu-
lating a noise trace can be reduced to generating random
variables. Once a cumulative mass function (CMF) of tar-
get data is prescribed, the same distribution of simulated
data can be achieved by filtering uniformly distributed ran-
dom numbers as inputs by the inverse CMF in Figure 3.
The target distribution does not need to be continuous for
the above method to work; it can be discrete. The proba-
bility mass function (PMF) of the simulated data is nearly
identical to the target data.

While simple and fast, this method neglects crucial infor-
mation such as time-dependence. Noise has temporal cor-
relation, and making samples independent breaks this cor-
relation. In theory, this means that if real noise has bursts
of interference that causes bursts of packet losses, a näıve
sampling model may not be able to capture this behavior.
On the other hand, it may be that this limitation ends up
having minimal effects on the final simulation behavior. We
therefore consider this approach to be a baseline measure-

Bin 1 2 3 ... 16
RSSI(dBm) -102∼ −98 -97∼ −93 -92∼ −88 ... -27∼ −23

Table 1: Closest-fit pattern matching further dis-
cretizes noise values in order to shrink its state
space.

ment for noise simulation.

3.3 Closest-fit Pattern Matching (CPM)
Unlike näıve sampling, which generates independent noise

values, closest-fit pattern matching (CPM) uses a probabil-
ity distribution of noise values given k previous noise values.
One problem CPM faces is an exploding state space: if noise
can take ≈60 values (-100 to -40 dBm), then CPM with a
window of k = 10 has a state space of 6010, or ≈ 6 · 1017.
As our traces have only ≈ 2 · 105 samples, very few patterns
will be populated. We therefore further discretize the RSSI
values, as shown in Table 1.

Each data point in the CPM model is a PDF of the ob-
served noise values given k previous values. To determine
the noise value of time nt, CPM samples from the PDF
associated with nt−1, nt−2, . . . nt−k. If there is no PDF as-
sociated with this noise series, CPM samples from the most
common PDF (the mode). CPM bootstraps from the mea-
sured trace: first k noise values are simply the first k samples
from the real-world measurements.

In the degenerate case of k = 0, CPM is equivalent to
näıve sampling. There is a tradeoff in how large a k is used.
A large k allows CPM to capture longer term periodicities.
However, as the state space grows at O(rk) where r is the
number of discretized RSSI readings, but the number of sam-
ples does not increase, the probability that any sequence
exists goes down exponentially. This is a basic overfitting
problem: in the case where k is the number of samples in
the trace, then CPM will play back the trace exactly, which
does not allow representative simulation.

Our CPM implementation uses a hashtable to store the
CPM state space, where the key is a string concatenation
of the noise values and the value is the PDF. We found
that k = 10 provides a good tradeoff between being rep-
resentative of the noise yet remaining non-deterministic, as
determinism could lead to incorrect assumptions when test-
ing protocols. We consider a more complete examination of
k as an important area of future work.

3.4 Correlation Distortion Method
The main cause of interference we observed, 802.11, has a

non-Gaussian property as a result of its discrete traffic pat-
terns. The tradeoff k imposes in CPM raises a significant is-
sue: much of the periodic noise spikes (e.g., 802.11 beacons)
have very long periods. For CPM to be able to capture these
beacons, for example, k should be larger than or equal to
100. This large k (100ms) makes the CPM state space very
sparse. There is longer-term correlation in the noise trace,
but CPM cannot effectively capture it. Our third approach
addresses this limitation by using a non-Gaussian random
process, which captures longer-term periodicities.

The core idea of the method is to transform non-Gaussian
to Gaussian with the same auto-correlation or spectrum of
target. Expressing the relationship in terms of Hermite poly-
nomials allows us to generate Gaussian random process by
using spectral representation method. In the end, with the
generated Gaussian process, the original non-Gaussian pro-

Noise Mean Std Skewness Kurtosis
Real Noise -97.1017 2.9702 3.8350 23.2346

Simul. Noise -97.6699 2.0886 5.1972 49.3293

Table 2: Statistical characteristics of real noise in a
light Meyer trace and noise correspondingly simu-
lated using the correlation distortion method.

cess can be achieved by using a transformation equation
(Eq. (8)).

More formally, we apply the correlation distortion method [7,
8, 13] to generate a non-Gaussian random process with a
prescribed auto-correlation function. We calculate the auto-
correlation of the random process from a noise trace using
mean-square (MS) ergodicity, assuming that the noise ran-
dom process follows wide-sense stationarity. A non-Gaussian
random process x(t) has a nonlinear relationship with a
Gaussian normal random process u(t), i.e. x(t) = g(u(t)).
In Eq. (1), the auto-correlation of non-Gaussian process in
terms of that of Gaussian normal random process can be
described as

Ruu(τ) =

∞X
k=0

a2
kρk

xx(τ) (1)

where ak =
1√
2πk!

Z ∞

−∞
g(σu) exp(−u2

2
)Hk(u)du (2)

Hk(u) = (−1)kexp(
u2

2
)

dk

duk
[exp(−u2

2
)]. (3)

In the above expressions, ρxx is the normalized auto-correlation
of the non-Gaussian process x(t) and Hk(u) is the kth Her-
mite polynomial. The Hermite polynomial is a classical or-
thogonal polynomial basis function. With these mathemati-
cal relations, the simulation procedure in correlation distor-
tion method is described in Figure 4. By Eq. 4, the auto-
correlation of non-Gaussian process can be transformed into
that of a Gaussian process.

Rxx(τ) = α2[Ruu(τ) + 2ĥ3
2
R2

uu(τ) + 6ĥ4
2
R3

uu(τ)] (4)

ĥ3 =
γ3

4 + 2
√

1 + 1.5γ4
, ĥ4 =

√
1 + 1.5γ4 − 1

18

α =
1q

1 + 2ĥ3
2

+ 6ĥ4
2

(5)

where γ3 is skewness(3rd order moment) of the process and
γ4 is kurtosis(4th order moment) of the process.

One limitation in the standard Hermite Model is that
ĥ3, ĥ4, and α parameters have been calculated with the
assumption of small deviations from Gaussian. Therefore,
for non-Gaussians which deviate significantly, the method
is not quite applicable. To reduce this problem, we applied
modified Hermite models in Eq. (6) and (7), which was pro-
posed by Tognarelli et al. [22], leading to improvement of
performance in non-Gaussian simulation.

γ3 = α3(8ĥ3
3

+ 108ĥ3ĥ4
2

+ 36ĥ3ĥ4 + 6ĥ3) (6)

γ4 + 3 = α4(60ĥ3
4

+ 3348ĥ4
4

+ 2232ĥ3
2
ĥ4

2
+ 60ĥ3

2
+ (7)

)(τxxR)(ωuuS)(τuuR)(xus)(txsTransform
Fast Fourier
Transform

Generation
with spectral

Representation

I-transform

Figure 4: Correlation Distortion Method. By using the relationship between non-Gaussian and Gaussian
random process, non-Gaussian random process can be generated via generation of Gaussian random process.

(a) Noise Traces of Real Noise for 802.11b low traffic

(b) Noise Traces of Simulated Noise by Correlation
Distortion method for 802.11b low traffic

Figure 5: 4 second noise traces of real low traffic
802.11b noise and example simulated noise using the
correlation distortion method. The simulated noise
captures the periodic beacon signal and low traffic
behavior.

(a) First-order PMF for Real Noise for 802.11b low
traffic

(b) First-order PMF for Simulated Noise by Correla-
tion Distortion method for 802.11b low traffic

Figure 6: First-order PMF for real noise and simu-
lated noise by correlation distortion method for low
802.11b traffic. They show the similar distribution
of RSSI values.

252ĥ4
2

+ 1296ĥ4
3

+ 576ĥ3
2
ĥ4 + 24ĥ4 + 3)

x = α[u + ĥ3(u
2 − 1) + ĥ4(u

3 − 3u)] (8)

The correlation distortion method can generate noise data
representative of a low-traffic 802.11b environment. Fig-
ure 5 shows simulated noise traces compared to real noise
ones. This is because it can capture the long-term period-
icities. We compared how well a simulated noise trace fol-
lows real noise behavior in terms of power spectral density
corresponding to auto-correlation function, first-order PMF,
mean (1st moment), standard deviation(2nd moment), skew-
ness (3rd moment), and kurtosis (4th moment). The power
spectral density of simulated noise matches that of real noise.
This means that time-correlated noise information, which
could be a critical factor for consecutive packet failures, is
successfully exploited. For the first-order PMF, our sim-
ulated noise closely follows the RSSI distribution of real
noise in Figure 6, but it is not exactly same as the real
one. The Jensen-Shannon distance between PMFs of real
noise and simulated noise is 0.089. While the näıve method
in the above section can achieve the perfectly same first-
order PMF, it fails to exploit time-correlated information.
With a small difference of the first-order PMF, this ap-
proach achieves the sameness of auto-correlation between
short-term noise data. Table 2 shows the mean, standard
deviation, skewness, and kurtosis.

However, heavy-traffic 802.11b environments deviate sig-
nificantly from Gaussian noise. The correlation distortion
method is usually applicable to the environment of mediocre
deviations from Gaussian. In Section 4, we compare the cor-
relation distortion method to CPM and näıve sampling for
low-traffic and heavy-traffic environments.

4. EXPERIMENTAL METHODOLOGY
We measure simulation accuracy by comparing conditional

packet delivery functions (CPDFs). A conditional packet de-
livery function describes the probability that a packet will
be received successfully given n previous failures or suc-
cesses. For example, the CPDF of node A to node B cAB

of 5 (cAB(5)) is the probability that B will receive a packet
from A after 5 consecutive failures, while cAB(−5) is the
probability that B will receive a packet after 5 consecutive
successes. If packet losses are independent, then the CPDF
is for the most part uniform; if packet losses are bursty, then
the CPDF is non-uniform.

We compare CPDFs using a rigorous theoretical measure,
the Kantorovich-Wasserstein distance. The Kantorovich-
Wasserstein distance has been widely used in theoretical
statistics and image signal processing applications to show
the similarity of probability distributions. The Kantorovich-

Figure 7: The CC2420 SNR/PRR curve.

Wasserstein metric is defined as

dW
p (X∗, Y ∗) = inf

η

p

vuut 1

N

nX
i=1

n∗X
i∗=1

d(xi, yη1(i,i∗))
p (9)

where η : (i, i∗) → (η1(i, i
∗), η2(i, i

∗)).
To calculate the Kantorovich-Wasserstein distance as our

evaluation metric, we used open-source codes for the Earth
Movers Distance [18], which is equivalent to Kantorovich-
Wasserstein distance. We use Kantorovich-Wasserstein rather
the Chi-squared test because CPDF values are not indepen-
dent, and rather than the Kolmogorov-Smirnov test because
a CPDFs is a discrete rather than continuous function.

We use the Kantorovich-Wasserstein distance of CPDFs
rather than measuring the noise itself because of the dif-
ficulty of comparing noise traces. Because our goal is to
generate a representative and reusable model of an environ-
ment’s noise, rather than simply replay it, simulated noise
will inherently differ from the measured noise. We found
that comparing mathematical properties of simulated and
real noise gave some indications that they might lead to sim-
ilar packet behavior, but for almost every similarity measure
between noise traces it is simple to create a degenerate case
that is mathematically similar but behaves completely dif-
ferently. We therefore measure similarity in terms of the
behavior we seek to recreate: packet delivery.

We use the real noise trace as a baseline for measuring the
accuracy of different simulation methods. This allows us to
control all other variables in an experiment. To generate the
baseline CPDF, we use the real noise trace against an SNR
curve derived from CC2420 experiments, using a fixed signal
strength with a fixed inter-packet interval (15ms). While the
signal strength is fixed for each simulation model, it is not
fixed across the models, as models assume different sensitiv-
ity thresholds or SNR curves. Instead, for each model we
choose the signal strength that creates a desired PRR. This
way, we can evaluate how good, bad, and intermediate links
manifest in each simulation model, given a particular noise
environment. Evaluating them in this way asks the critical
question “What do good, bad, and intermediate links look
like to a simulated node?”

For example, the default radio model of TinyOS 2.x’s
TOSSIM (TOSSIM2) simulator samples noise values from
the uniform distribution [m − r, m + r). Given a trace, we
compute the mean and variance of the noise values and use
them as the mean and range of TOSSIM’s RF model (this
is not 100% accurate, but since noise does not follow a uni-
form distribution, we believe it to be a reasonable approxi-
mation). We then tune the signal strength until it has the
desired PRR (e.g., 51% for an intermediate link, 90% for a

Model Naive Sampling CPM Corr.Dist.
Running Time 6 µs 14.2 µs 769 µs

Table 3: Mean execution time for each model to
generate a noise sample.

Figure 8: CPDF of an intermediate link from low-
noise Meyer trace of real noise. The X-axis [-20,20]
is consecutive packet delivery successes (negative)
or failures (positive), and the Y-axis is the PRR.
Packet losses are nearly independent.

good link). We do the same for the baseline: we tune the
signal strength so that sampling from the PRR/SNR curve
using the real noise trace has the same PRR. We measure
PRR over a 195 second trace with an inter-packet interval
of 15ms (135,000 packets).

We evaluate the noise models and four simulators: Em-
Star’s shadowing model with uniformly random noise, TOSSIM’s
bit-error model [14], TOSSIM 2.x’s gain model [4], and ns2’s
shadowing model with Gaussian random noise [1].

4.1 Noise Sampling
We used our noise sampling TinyOS application to gather

data from a wide range of environments and 802.15.4 chan-
nels. Figure 1 showed three example traces. We also col-
lected noise traces from the Grand Canyon in Arizona, Gates
Hall at Stanford, and in the middle the Great Salt Desert.
In the Grand Canyon and Great Salt Desert we observed
no 2.4GHz noise besides AWGN; in Gates Hall we observed
noise similar to Meyer Library.

4.2 Implementation
We incorporated our three noise models with combined

path-loss and shadowing model into the TOSSIM simulator
of TinyOS 2.0 [3]. Naive sampling keeps a probability dis-
tribution of a measured noise traces from a specific distance
to 802.11b access point. CPM uses a hashtable to make an
efficient query and derive a noise value by sampling from
it. The correlation distortion method requires 1,024 data
points in floating type, which include power spectral density
information. After deriving an estimated noise value from
three different methods with 1ms granularity, it is applied
to combined path-loss and shadowing model. The packet
delivery success or loss is determined by signal-to-noise by
using signal-to-noise ratio curve in Figure 7. In order to
separate out the effects noise have on packet delivery from
the effects it has on media access, we disabled CSMA at the
transmitter in all experiments (its noise is always below the
clear channel threshold).

We measured the running time of each of our simulation
models, shown in Table 3. We measured these values under
Cygwin using gettimeofday(2) on a Fujitsu S6000 laptop
with a 1.6GHz Pentium M processor. Both the naive sam-
pling and CPM approaches are very fast; we do not expect
them to be a significant bottleneck in packet-level simula-
tion. The correlation distortion method, in contrast, intro-

(a) Good Link (PRR = 90%)

(b) Intermediate Link (PRR = 51%)

(c) Bad Link (PRR = 11%)

Figure 9: Conditional packet delivery functions for
a good, intermediate, and poor link using the heavy
use Meyer library trace. The X-axis is the consecu-
tive packet delivery successes (negative) or failures
(positive), and the Y-axis is the PRR. In a good
link, losses are independent of prior behavior and in
a poor link they are slightly correlated. In interme-
diate links they are highly correlated.

duces significant delays. Because our noise traces are 1kHz
samples, we simulate noise at a 1kHz granularity. Currently
we simulate noise as a continuous stream (take every sam-
ple). For large simulations with bursty traffic patterns this
approach is inefficient, We are currently evaluating ways to
avoid this cost (e.g., after n · k unsampled periods, revert to
the mode distribution).

5. EVALUATION
We generated for many traces with a variety of signal

strengths in order to measure packet delivery behavior for
good, bad, and intermediate links. For the most part, low-
rate traffic and quiet environments behave in a simple fash-
ion: packet losses due to noise are independent. For ex-
ample, packet losses from the Grand Canyon trace would be
due to AWGN and the SNR curve, both of which cause inde-
pendent losses rather temporally correlated bursts of loss. In
low-rate conflicting traffic environments, clock skew as well
as differing intervals between conflicting sources and sensor
nodes make periodic losses possible but highly unlikely.

Figure 8 shows that for an intermediate link, packet losses
are independent with respect to consecutive packet losses.
This means that low 802.11b traffic does not lead to burst
packet errors and the temporal effects can be negligible in
low-traffic 802.11b environment. Therefore, other simula-
tion methods cannot show the significant difference.

Traces taken in a busy 802.11 environment, however, be-
have differently. Figure 9 shows CPDFs for a good, interme-
diate, and bad link generated from the busy Meyer trace in

(a) Real Noise

(b) TOSSIM 1.x

(c) EmStar

(d) CPM

(e) Correlation Distortion

Figure 10: CPDFs of a good link from the busy
Meyer trace of real noise, TOSSIM 1.x, EmStar, and
Closest-fit Pattern Matching. The x-axis [-50,20] is
consecutive packet delivery successes (negative) or
failures (positive), and the Y-axis is the PRR.

Approach KW
EmStar 0.1463
TOS 1.x 0.1902
TOS 2.x 0.2174

ns2 0.1935
Naive 0.1433
CPM 0.0719

Corr. Dist. 0.1440

(a) KW distances.

0

0.05

0.1

0.15

0.2

0.25

Em
St

ar

TO
SS

IM
 1
.x

TO
SS

IM
 2
.x ns

2

Naï
ve

CP
M

Co
rr.

 D
ist

.

K
W

 D
is

ta
n
ce

(b) KW distance plot.

Figure 11: Kantorovich-Wasserstein distance of sim-
ulation approaches from the real noise trace for a
good link (PRR = 0.90).

(a) Real Noise

(b) TOSSIM 1.x

(c) EmStar

(d) CPM

(e) Correlation Distortion

Figure 12: CPDFs of a bad link from the busy
Meyer trace of real noise, TOSSIM 1.x, EmStar, and
Closest-fit Pattern Matching. The x-axis [-20,50] is
consecutive packet delivery successes (negative) or
failtures (positive), and the Y-axis is the PRR.

Approach KW
EmStar 0.0394
TOS 1.x 0.0394
TOS 2.x 0.0395

ns2 0.0352
Naive 0.0322
CPM 0.0394

Corr. Dist. 0.0412

(a) KW distances.

0

0.01

0.02

0.03

0.04

0.05

Em
St

ar

TO
SS

IM
 1
.x

TO
SS

IM
 2
.x ns

2

Naï
ve

CP
M

Co
rr.

 D
ist

.

K
W

 D
is

ta
n
ce

(b) KW distance plot.

Figure 13: Kantorovich-Wasserstein distance of sim-
ulation approaches from the real noise trace for a
bad link (PRR = 0.11).

Figure 1. Despite the temporal correlation in noise, packet
behavior in good and bad links is for the most part inde-
pendent. In the case of a good link, this is due to the fact
that the packet transmission interval (15ms) is not a factor
of the large noise spikes, which are governed by TCP and
HTTP timing. In the case of a bad link, there are many
long bursts of loss caused by the web traffic, creating a long
tail over which PRR degrades slightly. For an intermedi-
ate link, however, there is a pronounced correlation between
prior and future losses: there is a 4-fold different in the loss
rate after 6 delivery successes and 6 delivery failures.

Figure 10 shows how different simulation approaches cap-
ture the dynamics of a good link. Because losses are essen-
tially independent, different simulation approaches all per-
form reasonably well. However, at high PRRs, slight varia-
tions can significantly change the CPDF. Note that the real
noise trace has up to 36 consecutive packet delivery suc-
cesses, while TOSSIM and EmStar only reach 29 and 32
respectively. In contrast, CPM reaches up to 35. Table 11
shows the Kantorovich-Wasserstein distance of the CPDFs
of our three approaches as well as both versions of TOSSIM,
ns2, and EmStar. CPM has the lowest KW distance (0.0719)
by a factor of 2 (0.0719). Every approach had an identical
PRR over the 130,000 packets of the 195s interval.

Figure 12 shows how different simulation approaches cap-
ture the dynamics of a poor link. Again, the different sim-
ulation approaches all perform reasonably well. However,
CPM is able to short-term trends well enough to capture
PRR degradation as losses increase. Table 13 shows the KW
distance of the CPDFs of our three approaches and sensor-
net simulators. Naive sampling has a distance 10% lower
than the next best approach, ns2. However, all approaches
have KW distances within 0.009 of one another.

As Figure 9 shows, intermediate links are more complex
than their good and bad counterparts. Unlike the compar-
atively flat CPDFs of good and bad links, an intermediate
link can have a huge variation in PRR. This behavior sup-
ports the common observation that intermediate links are
the difficult ones for networking algorithms such as link es-
timators. They are therefore the most interesting and im-
portant to simulate. Given the simplicity of other cases, we
focus on intermediate links for the rest of the evaluation.

Figure 14 shows the CPDFs of an intermediate link based
on real noise as well as using EmStar, TOSSIM 1.x, TOSSIM
2.x, ns2, näıve sampling, closest-fit pattern matching, and
the correlation distortion method. For real noise in an inter-
mediate link, the PRR decreases as the number consecutive
packet losses increases. This represents the burstiness of
the noise in this class of environment. One packet loss in-
dicates that the node is likely encountering a packet burst,
and therefore the PRR decreases for a reasonable period.
The PRR values in response to packet successes indicate the
probability of encountering a burst of loss. The PRR val-
ues given consecutive losses are non-zero because of 802.11b
timing; it is possible to transmit 802.15.4 packets in between
802.11b/TCP timers.

All simulation models except CPM shows PRRs that are
for the most part independent of consecutive packet deliv-
ery failures or successes: the CPDF converges to the aver-
age PRR value regardless of error bursts. CPM captures
the short-term temporal effects, showing the same behavior
as real noise. Table 15 shows the Kantorovich-Wasserstein
distance of each CPDF with the real noise trace. CPM sig-

(a) Real Noise

(b) EmStar

(c) TOSSIM 1.x

(d) TOSSIM 2.x

(e) ns2

(f) Naive Sampling

(g) CPM

(h) Correlation Distortion

Figure 14: CPDFs of an intermediate link from the
busy Meyer trace. The X-axis is consecutive packet
delivery successes (negative) or failures (positive),
and the Y-axis is the PRR.

Approach KW
EmStar 0.3373
TOS 1.x 0.3384
TOS 2.x 0.3164

ns2 0.3446
Naive 0.2660
CPM 0.0840

Corr. Dist. 0.3120

(a) KW distances.

0

0.1

0.2

0.3

0.4

Em
St

ar

TO
SS

IM
 1
.x

TO
SS

IM
 2
.x ns

2

Naï
ve

CP
M

Co
rr.

 D
ist

.

K
W

 D
is

ta
n
ce

(b) KW distance.

Figure 15: Kantorovich-Wasserstein distance of sim-
ulation approaches from the real noise trace for an
intermediate link (PRR = 0.51).

nificantly outperforms all other simulation methods.
Figure 8 shows that for an intermediate link, the CPDF

does not show the same short-term effects under light 802.11b
traffic as it does under heavy 802.11b traffic. The packet
losses are independent with respect to the number of con-
secutive packet losses. This means that low 802.11b traffic
does not lead bursts of packet errors: the temporal effects
are negligible in low-traffic 802.11b environment.

The correlation distortion method’s performance is markedly
mediocre; it under performs naive sampling, and is very close
to TOSSIM 2.x. Its strengths (and limitations) are in line
with this observation; the advantage of the correlation dis-
tortion method is that it can accurately capture occasional
spikes. Bursts of high noise, however, are too non-Gaussian
for it to capture well. Unfortunately, occasional spikes gen-
erally appear as independent packet losses to to timing dif-
ferences, and so the expressive power of this approach turns
out to have very little benefit in practice.

Of the three techniques we proposed, CPM performs best.
In our experiments, we set k = 10, packets are sent every
15ms and the noise sampling rate is 1kHz. This means that
there will be ≈ 15 samples between two packet transmis-
sions: the noise at one packet transmission is never in the
historical window of the next transmission. CPM can cap-
ture bursts that span multiple inter-packet intervals, how-
ever, because the values it does consider are still dependent
on those outside its window. Consider, for example, if CPM
has a historical entry of this form:

PDF (8, 8, 8, 8, 8, 8, 8, 8, 8, 8) = {0.02 : 1, 0.98 : 8}

That is, given 10 consecutive noise readings of 8, 2% of the
time CMP will produce a noise value of 1 and 98% of the
time a noise value of 98%. Once a run of 8s begins, the
expectation is that it will last for 50ms (50 samples). In
practice, CMP histories are much more complex, but the
principle still holds.

6. DISCUSSION AND CONCLUSION
This paper takes a step forward in simulating packet de-

livery by modeling difficult noise signatures. However, mod-
eling noise traces in this fashion makes three simplifying as-
sumptions; relaxing each assumption is a complete research
topic which we plan to explore.

First, by modeling each node’s noise traces independently,
these models ignore the fact that noise is spatially depen-
dent. If node A hears a noise spike, nearby node B will hear
it as well. In one formulation, this means that node A’s noise

value not only depends on its prior noise values but also the
noise values of its nearby neighbors. Capturing these depen-
dencies requires information on where the noise sources are.
Another formulation is to turn the problem around and sim-
ulate noise sources (rather than observed noise) and simply
calculate the noise propagation in order to measure noise at
each possible listener.

Second, while packet-based noise changes are abrupt and
therefore contribute to short-term changes in SNR and cor-
related losses, there are also longer-term SNR changes due to
gradual RSSI trends [16, 20]. Concurrently simulating both
phenomena – brief noise spikes and long-term RSSI swings
– would allow simulation to accurately capture both long-
term and short-term dynamics. Furthermore, CPM only
handles short-term noise bursts; characterizing longer-term
noise trends (busy and quiet periods) would allow longer-
running simulations that address another level of dynamism.

Finally, all of our results are based on a single (albeit dom-
inant) low-power radio technology, and we have not observed
all forms of 2.4GHz interference. Microwave ovens and ana-
log 2.4GHz devices, for example, produce relatively long
(seconds-minutes) periods of high interference, while Blue-
tooth’s frequency hopping undoubtedly has complex and
interesting dynamics. Evaluating our approaches in other
ISM bands (e.g., the 433 and 915 MHz CC1000 radio on the
mica2 platform) would better establish how general they are.

Our experimental results demonstrate that using an SNR
curve with a closest-fit pattern matching noise model can
significantly increase wireless packet delivery simulation ac-
curacy. Furthermore, we can easily generate CPM models
from real noise traces, allowing tools to effectively repre-
sent real-world environments in simulation. This approach
shifts the focus from simulation algorithms to how well a
simulation can capture real-world behavior based on real-
world data, hopefully enabling researchers to evaluate and
test protocols in a diverse set of representative environments.

Acknowledgements
This work was supported by generous gifts from the In-
tel Corporation and Docomo Capital, a fellowship from the
Samsung Lee Kun Hee Scholarship Foundation, the National
Science Foundation under grant #0615308 (“CSR-EHS”),
and a Stanford Terman Fellowship.

7. REFERENCES
[1] The network simulator - ns-2.

http://www.isi.edu/nsnam/ns.
[2] Sensor network emulator/simulator/debugger.

http://www.cshcn.umd.edu/research/atemu/.
[3] Tinyos 2.0. http://www.tinyos.net/tinyos-2.x/.
[4] Tossim 2.x. http://www.tinyos.net/tinyos-2.x/.
[5] A. Cerpa, N. Busek, and D. Estrin. Scale: A tool for simple

connectivity assessment in lossy environments. Technical
Report 0021, Sept. 2003.

[6] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin.
Temporal properties of low power wireless links: Modeling
and implications on multi-hop routing. In Proceedings of
the Sixth ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC’05), 2005.

[7] D. Conner and J. Hammond. Modeling of stochastic system
inputs having prescribed distribution and covariance
functions. In Applied Mathematical Modeling, volume 3,
1979.

[8] R. Deutsch. Nonlinear Transformations of Random
Processes. Prentice-Hall, 1962.

[9] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. Complex behavior at scale: An
experimental study of low-power wireless sensor networks.
2002.

[10] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. An empirical study of epidemic
algorithms in large scale multihop wireless networks. UCLA
Computer Science Technical Report UCLA/CSD-TR
02-0013, 2002.

[11] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson,
D. Estrin, E. Osterweil, and T. Schoellhammer. A system
for simulation, emulation, and deployment of heterogeneous
sensor networks. In Proceedings of the 2nd international
conference on Embedded networked sensor systems
(SenSys), pages 201–213, New York, NY, USA, 2004. ACM
Press.

[12] C. Givens and R. Shortt. A class of wasserstein metrics for
probability distributions. volume 31, pages 231–240, 1884.

[13] G. Johnson. Constructions of particular random process. In
Proceedings of the IEEE, volume 82, pages 270–285, 1994.

[14] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Simulating large wireless sensor networks of tinyos motes.
In Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2003.

[15] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code maintenance and
propagation in wireless sensor networks. In First
USENIX/ACM Symposium on Network Systems Design
and Implementation (NSDI), 2004.

[16] S. Lin, T. He, J. Zhang, G. Zhou, L. Gu, and J. A.
Stankovic. Atpc: Adaptive transmission power control for
wireless sensor networks. 2006.

[17] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. Ght: a geographic hash table
for data-centric storage. In Proceedings of the first ACM
international workshop on Wireless sensor networks and
applications, pages 78–87. ACM Press, 2002.

[18] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases. In
Proceedings of the 1998 IEEE International Conference on
Computer Vision, pages 59–66, 1998.

[19] D. Son, B. Krishnamachari, and J. Heidemann.
Experimental study of concurrent transmission in wireless
sensor networks. In Proceedings of the Fourth ACM
Conference on Embedded Networked Sensor Systems
(SenSys), 2006.

[20] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis.
Understanding the causes of packet delivery success and
failure in dense wireless sensor networks. In Technical
report SING-06-00, Stanford, CA, 2006.

[21] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable
sensor network simulation with precise timing. In IPSN
’05: Proceedings of the 4th international symposium on
Information processing in sensor networks, page 67,
Piscataway, NJ, USA, 2005. IEEE Press.

[22] M. Tognarelli and A. Kareem. Equivalent statistical
cubicization: A frequency domain approach for
nonlinearities in both system and forcing function. In
Journal of Engineering Mechanics, ASCE, volume 123,
1997.

[23] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In
Proceedings of the First International Conference on
Embedded Network Sensor Systems, 2003.

[24] M. Zuniga and B. Krishnamachari. Analyzing the
transitional region in low power wireless links. In First
IEEE International Conference on Sensor and Ad hoc
Communications and Networks (SECON), 2004.

	Introduction
	Background
	Noise Characterization
	Measuring Noise
	Naive Sampling
	Closest-fit Pattern Matching (CPM)
	Correlation Distortion Method

	Experimental Methodology
	Noise Sampling
	Implementation

	Evaluation
	Discussion and Conclusion
	References

